Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Organización Computacional

Programa de Laboratorio

Código:	964	Sección:	A
Escuela:	Ciencias y Sistemas	Área:	Ciencias de la Computación
Categoría:	Obligatorio	Semestre:	1er. 2018
Catedrático	Ing. Otto Escobar	Auxiliar:	Jorge Luis Carrillo
Salón Curso:	T-3 210	Salón Lab:	T-3 309
Días que se Imparte:	Martes y jueves 9:00-10:40	Horario:	Jueves 10:50-12:30

1. Descripción

a. De una forma general el laboratorio del curso busca introducir al estudiante a los conceptos básicos de la electrónica digital, empezando por los conceptos básicos hasta la construcción e integración de circuitos a través de la práctica y los conocimientos teóricos de los componentes electrónicos.

2. Objetivos

- a. Que el estudiante comprenda la construcción y funcionamiento de los componentes electrónicos.
- b. Que el estudiante sea capaz de aplicar los conocimientos de la electrónica básica para la construcción de circuitos lógicos funcionales.
- c. Que el estudiante sea capaz de implementar circuitos electrónicos a través del uso de lógica combinacional y mapas de Karnaugh.
- d. Que el estudiante sea capaz de implementar un ALU básico.
- e. Que el estudiante sea capaz de solucionar problemas por medio del uso de la electrónica digital.

3. Contenido

Conceptos básicos de la Electrónica.

- Simbología
- Fuentes de Alimentación
- Diodos
- Transistores

Lógica binaria

- Álgebra de Boole
- Funciones de Boole
- Compuertas Lógicas básicas
- Compuertas Transistorizadas

Lógica Combinacional

- Minterminos y Maxterminos
- Mapas de karnaugh

Circuitos Lógicos Digitales

- Sumador
- Restador
- Multiplicador
- Comparadores
- Multiplexador (MUX)
- Demultiplexador (DEMUX)

Dispositivos Electromecánicos

- Motores DC
- Motores Stepper

Lógica Secuencial

- Diagramas de Estados
- Flip Flops
- Registros
- Contadores
- Memorias

Medios de Comunicación del Computador

- Puerto Serial
- Puerto Paralelo

4. Metodología

- Clases magistrales para la explicación de la teoría.
- Elaboración de hojas de trabajo de implementación de circuitos digitales.
- Tareas de investigación y simulación de circuitos.
- Proyectos y prácticas para la implementación de la teoría.

5. Evaluación

La nota de laboratorio estará distribuida de la siguiente manera:

Descripción	Punteo
Tareas	10 pts.
Prácticas	45 pts.
Proyecto	35 pts.
Examen Final	10 pts.
Total	100 pts.

Observaciones:

La calificación de las prácticas y/o proyecto será en forma grupal acoplándose al día que se les indique, de no presentarse algún miembro del grupo y no poseer una justificación válida, este tendrá la nota de 0 pts. En la práctica y/o proyecto.

6. Bibliografía

- Lógica digital y diseño de computadores. M. Morris Mano, Prentice Hall.
- Mandado, E.: "Sistemas Electrónicos Digitales". Marcombo Boixareu Editores, Última edición.
- Thomas C. Bartee: "Fundamentos de Computadoras Digitales". Mc. Graw Hill, quinta edición (Primera en castellano)
- Tocci R. J.: "Sistemas Digitales, Principios y Aplicaciones". Prentice Hall, tercera edición.
- Tanenbaum, A. S.:"Organización de Computadoras, un enfoque estructurado".
 Prentice Hall Hispanoamericana S. A., 1992