UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA EN CIENCIAS Y SISTEMAS

NOMBRE DEL CURSO: Arquitectura de Computadoras y Ensambladores 1

CODIGO:	778	CREDITOS:	5
			Ciencias de
	Ciencias y		la
ESCUELA:	Sistemas	AREA:	Computación
			281
	796		779
PRERREQUISITO:	964	POSTREQUISITO:	970
CATEGORIA:	Obligatorio	SECCION:	В
HORAS POR SEMANA		HORAS POR	
DEL CURSO:	4	SEMANA	2
		DE	
		LABORATORIO:	
DIAS QUE SE IMPARTE EL	Jueves		
CURSO:	Sábado	DIAS DE	Jueves
		LABORATORIO	
		HORARIO DE	
HORARIO DEL CURSO:	17:20 – 19:00	LABORATORIO:	14:50 – 16:30
	8:50 – 10:30		

DESCRIPCIÓN DEL LABORATORIO:

El laboratorio del curso de Arquitectura de Computadoras y Ensambladores 1, trata sobre la parte práctica del curso. Se encarga de la aplicación de electrónica digital haciendo uso de Microcontroladores. Refuerza los conocimientos de electrónica digital y secuencial. Además de entender el funcionamiento de programas a bajo nivel, y manipular el uso de la memoria en los programas informáticos.

OBJETIVO GENERAL:

Poner en práctica los conceptos aprendidos sobre la arquitectura de un computador.

OBJETIVOS ESPECÍFICOS:

- 1. Que el estudiante sea capaz de desarrollar aplicaciones con entradas y salidas, tanto digitales como análogas haciendo uso de microcontroladores.
- 2. Poner en práctica los conocimientos de operaciones aritméticas básicas a bajo nivel.
- 3. Comprender el uso de la memoria de video en los computadores.
- 4. Que el estudiante conozca el impacto del Lenguaje Ensamblador en las Ciencias de la Computación.

HABILIDADES:

- 1. Conocimiento de programación del lenguaje utilizado por los microcontroladores.
- 2. Conocer las funciones básicas de salida serial.
- 3. Comprensión de la importancia y aplicación del código intermedio en la construcción de software.
- Comprensión de los requerimientos que se les planteen en los enunciados a lo largo del curso.

COMPETENCIAS:

- 1. Interpretar parámetros utilizados en robótica.
- 2. Comprender el uso de motores
- 3. Aplicar herramientas de análisis léxico y sintáctico para la resolución de problemas.
- 4. Crear soluciones funcionales aplicando los conceptos de compiladores.

METODOLOGÍA:

- Se impartirán clases presenciales para fortalecer el conocimiento de los diferentes Microcontrolares.
- Elaboración de tareas para conocer la teoría sobre las herramientas utilizadas en la práctica.
- Se realizarán prácticas y proyectos para poder evaluar los conceptos adquiridos en clase sobre la arquitectura de computadoras.

EVALUACIÓN DEL RENDIMIENTO ACADÉMICO:

El laboratorio tiene una ponderación de 30 puntos distribuidos de la siguiente manera.

Actividad	Ponderación	Porcentaje
1 Tarea Práctica (Arduino)	1.5	5%
3 Prácticas (Ensamblador)	8.1	27%
Proyecto 1 (Arduino)	5.4	18%
Proyecto 2 (Ensamblador)	10.5	35%
2 Cortos	1.2	4%
3 Tareas	0.9	3%
Final	2.4	8%
Total	30	100.00%

Para aprobar el laboratorio se debe tener una nota final igual o mayor al 61% de los puntos.

OBSERVACIONES:

- La calificación de los proyectos de laboratorio es personal acoplándose al día y horario que se indique previamente.
- Copias parciales o totales de los proyectos tendrán una nota de 0 puntos y los responsables serán reportados a la Escuela de Ingeniería en Ciencias y Sistemas.
- Se debe de mandar los archivos entregables en fechas establecidas para tener derecho a calificación.

C

CONTENIDO:

PRIMERA UNIDAD: Arquitectura del Computador

Sesión 1 - Semana del 23 al 27 de julio, Clase Teórica

- 1.1. Introducción al curso y repaso.
 - 1.2.1.Reseña histórica
 - 1.2.2.Microarquitecturas
 - 1.2.3. Arquitectura Von Neumann
 - 1.2.4. CISC vs RISC

2. SEGUNDA UNIDAD: Microcontroladores

Sesión 2 - Semana del 30 de julio al 3 de agosto, Clase Práctica

- 2.1. Definición de microncontroladores
 - 2.1.1. Arduino
 - 2.1.2. Software Arduino
 - 2.1.3. Estructuras de control
 - 2.1.4. Entradas y salidas de Arduino

Sesión 3 - Semana del 6 al 10 de agosto, Clase Teórica

- 2.1.5. Pantalla LCD
- 2.1.6. Aplicaciones.

Sesión 4 – Semana del 13 al 17 de agosto, Clase Teórica

- 2.2. Bluetooth
 - 2.2.1. Historia
 - 2.2.2. Módulos

3. TERCERA UNIDAD: Lenguaje Ensamblador

Sesión 5 - Semana del 20 al 24 de agosto, Clase Teórica

- 3.1. Assembler
 - 3.1.1. Historia
 - 3.1.2. Mnemónico
- 3.2. Herramientas
 - 3.2.1. NASM
 - 3.2.2. DOS
 - 3.2.3. DOSBox
 - 3.2.4. Ejemplos

Sesión 6 - Semana del 27 al 31 de agosto, Clase Teórica

- 3.3. Registros
 - 3.3.1. Registros de uso general
 - 3.3.2. Herramientas recomendadas
- 3.4. Instrucciones
 - 3.4.1. Instrucciones de Movimiento
 - 3.4.2. Instrucciones Aritméticas
 - 3.4.3. Instrucciones Lógicas
 - 3.4.4. Instrucciones de Bifurcación
 - 3.4.5. Instrucciones de Control
 - 3.4.6. Instrucciones de Software
- 3.5. Declaración de datos
 - **3.5.1.** La Pila

Sesión 7 - Semana del 3 al 7 de septiembre, Clase Teórica

- 3.6. Funciones y procedimientos
 - 3.6.1. Etiquetas
 - 3.6.2. Procedimientos
 - 3.6.3. Macros

Sesión 8 - Semana del 10 al 14 de septiembre, Clase Teórica

- 3.7. Interrupciones
 - 3.7.1. Rutinas auxiliares

Sesión 9 - Semana del 17 al 21 de agosto, Clase Teórica

- 3.8. Modo Video
 - 3.8.1. VGA
 - 3.8.2. Modos de video

Semana del 24 al 29 de septiembre, congresos estudiantiles

Sesión 10 - Semana del 1 al 5 de octubre, Clase Teórica-Práctica

- 3.9. Modos de Video
 - 3.9.1. Mapeo Lexicográfico
 - 3.9.2. Sistema Cartesiano

Sesión 11 - Semana del 8 al 12 de octubre, Clase Teórica-Práctica

- 3.10. Aplicaciones
 - 3.10.1. Ejemplo de aplicación de bajo nivel

Sesión 12 - Semana del 15 al 19 de octubre, clase Teórica-Práctica

- 3.10.2. Utilización de marcos
- 3.10.3. Utilización de etiquetas
- 3.10.4. Transmisión en puertos

CALENDARIZACIÓN DE ACTIVIDADES:

- 1. Conferencia:
 - 1.1. Realización de conferencia sección A: segunda semana de agosto/septiembre
 - 1.2. Realización de conferencia sección B: segunda semana de agosto/septiembre

La calendarización de las conferencias puede variar según la disponibilidad de los conferencistas.

2. Congresos:

Semana del 24 al 29 de septiembre, congresos estudiantiles

BIBLIOGRAFÍA:

- 1. Los microprocesadores INTEL Arquitectura programación e interfaz de los procesadores 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro y Pentium II, Barry Brey. Editorial: Prentice Hall, Septima Edición.
- 2. PC INTERNO, Autor: Tisher & Hennrich, Editorial: Abacus, Edición: 6a.
- 3. Organización y Arquitectura de Computadores, Autor: William Stallings, ditorial: Prentice Hall, Cuarta Edición.