Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas

Arquitectura de Computadores y Ensambladores 2

CÓDIGO	779	CRÉDITOS	4
ESCUELA	Ciencias y Sistemas	ÁREA A LA QUE PERTENECE	Ciencias de la Computación
PRE REQUISITO	Arquitectura de Computadores y Ensambladores 1	POST REQUISITO	Ninguno
CATEGORÍA	Obligatorio	SEMESTRE	Primer Semestre
CATEDRÁTICO	Ing. Gabriel Alejandro Díaz López	AUXILIAR	Sergio André Lima Corado Estuardo Sebastián Valle Bances
EDIFICIO	Meet	SECCIÓN	N
SALON DEL CURSO	L-II-1	SALON DE LABORATORIO	
HORAS POR SEMANA DEL CURSO	4	HORAS POR SEMANA DEL LABORATORIO	2
DÍAS QUE SE IMPARTE EL CURSO	Miércoles y Sábados	DÍAS QUE SE IMPARTE EL LABORATORIO	Sábado
HORARIO DEL CURSO	Miércoles 10:40 – 12:20 Sábado 10:30 – 12:10	HORARIO DE LABORATORIO	Laboratorio Sabado 7:10 – 9:00

DESCRIPCIÓN DEL CURSO: En este curso el estudiante aprenderá los conceptos teóricos de automatización, desde sus inicios hasta su aplicación moderna y como estos son utilizados para resolver problemas de la vida cotidiana aplicando técnicas de comunicación, transferencia de datos y aplicaciones Inteligentes; El estudiante profundizará en la técnica de trabajo más conveniente para resolver dichos problemas utilizando un marco de trabajo en el que se abordan los nuevos retos de diseño de procesos que suponen los productos inteligentes y conectados.

OBJETIVO GENERAL: Proveer al estudiante el conocimiento teórico sobre automatización y profundizar en las formas en que estos conceptos deben ser organizados para resolver problemas mediante la aplicación de emprendimientos tecnológicos de hardware y software en entornos domésticos, urbanos e industriales.

OBJETIVOS ESPECÍFICOS:

- 1. Que el estudiante aprenda a utilizar marcos de trabajo para la organización de conceptos y teorías
- 2. Que el estudiante integre grupos de trabajo y aproveche las ventajas de organizar su trabajo en roles.
- 3. Que el estudiante aprenda la historia de automatización y como se ha desarrollado la industria de IoT en la actualidad
- 4. Que el estudiante comprenda la importancia de la interpretación del mundo digital al mundo humano
- 5. Que el estudiante identifique la información crítica que los objetos de loT proporcionan y la pueda transformar en conocimiento valioso para los fabricantes y los usuarios.
- 6. Conocer el funcionamiento de la industria en la actualidad y las diferentes formas en que los proyectos desarrollados en el laboratorio de este curso pueden utilizarse para emprender.

METODOLOGÍA: El aprendizaje se desarrolla mediante

- Clases magistrales, para entregar el conocimiento teórico
- Talleres en vivo de programación para entregar el conocimiento práctico
- Exposiciones por los alumnos para difundir experiencias y conocimiento colectivo
- Solución de problemas y preguntas durante el tiempo que dure la clase y en el periodo asignado para foros utilizando las herramientas digitales proveídas por la facultad.

Las prácticas, proyectos y tareas. serán entregadas mediante las plataformas digitales proporcionadas por la facultad y en los casos que aplique de forma presencial.

Las fechas de entrega y forma de entrega serán publicadas utilizando las herramientas digitales proveídas por la facultad.

EVALUACIÓN DEL RENDIMIENTO ACADÉMICO: Según el Reglamento General de Evaluación y Promoción del Estudiante de la Universidad de San Carlos de Guatemala, la zona tiene valor de 75 puntos, la nota mínima de promoción es de 61 puntos y la zona mínima para optar a examen final es de 36 puntos **Se evaluará el % de asistencia y que se cumpla con las indicaciones del reglamento vigente por la Facultad**.

3 Exámenes Parciales (10 ptos c/u) Tareas y asistencia		
Laboratorio		
Investigación (Tareas)	2 ptos	
Exámenes Cortos	2 ptos.	
Examen Final	•	
Pitch Proyecto (Exposición)		
Práctica 1	6 ptos	
Proyecto 1	8 ptos	
Proyecto 2	10 ptos	
Examen Final	•	
Total	100 ptos.	

CONTENIDO PROGRAMÁTICO Y CALENDARIZACIÓN

UNIDAD UNO

Sesión 1

- Introducción al curso
- De la automatización al loT

Sesión 2: Marco de trabajo para el diseño de productos automatizados e IoT

- Introducción
- Infraestructura
- Sensores
- Conectividad
- Análisis de datos
- Apps inteligentes

Sesión 3

• Ejemplo de aplicación del smart connected design framework

Sesión 4: Tecnología

- Introducción
- Internet de las Cosas
- Objetos inteligentes conectados
- Efectos del diseño en los objetos

UNIDAD DOS

Sesión 5:

• Sistemas automatizados

Sesión 6:

- Automatización
- Casos de uso de la automatización

Sesión 7:

• Profundización en Conectividad, análisis de datos y representacion de informacion

Sesión 8:

Innovación Disruptiva

UNIDAD TRES

Sesión 9: Sistemas industriales Automatizados

- Partes de un sistema automatizado industrial
- Industria 4.0

Sesión 10:

- Control y supervisión de procesos industriales a distancia.
- SCADA

UNIDAD CUATRO

Sesión 11:

• El CNC y la Impresora 3D

Sesión 12:

Integracion tecnologica del control

BIBLIOGRAFÍA

• INGENIERÍA DE LA AUTOMATIZACIÓN INDUSTRIAL RAMÓN PIEDRAFITA MORENO ISBN 9788478973842 SISTEMAS DE CONTROL AUTOMATICO BENJAMÍN C. KUO.