PROGRAMA DE LABORATORIO

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS Y SISTEMAS

SISTEMAS OPERATIVOS 2

CÓDIGO:	0285	PONDERACIÓN:	4
ESCUELA DE INGENIERÍA EN:	CIENCIAS Y SISTEMAS	ÁREA A LA QUE PERTENECE:	CIENCIAS DE LA COMPUTACIÓN
PRE REQUISITO:	281 - SISTEMAS OPERATIVOS 1	POST REQUISITO:	798 - SEMINARIO DE SISTEMAS 2
			2009 - PRÁCTICAS Finales ingeniería Ciencias y Sistemas
CATEGORÍA:	OBLIGATORIO	VIGENCIA:	SEGUNDO SEMESTRE 2025
HORAS POR SEMANA DEL CURSO:	х	HORAS POR SEMANA DEL LABORATORIO:	1.7
HORAS DE AUTOAPRENDIZAJ E:	Х	TOTAL DE HORAS DE APRENDIZAJE:	4
CATEDRÁTICO (A):	Ver sección de Equipo Académico	AUXILIAR:	Ver sección de Equipo Académico
EDIFICIO:	Ver sección de Equipo Académico	SECCIÓN:	Ver sección de Equipo Académico
SALÓN DEL CURSO:	Ver sección de Equipo Académico	SALON DEL LABORATORIO:	Ver sección de Equipo Académico
DIAS QUE SE IMPARTE EL CURSO:	Ver sección de Equipo Académico	DIAS QUE SE IMPARTE EL LABORATORIO:	Ver sección de Equipo Académico
HORARIO DEL CURSO:	Ver sección de Equipo Académico	HORARIO DEL LABORATORIO:	Ver sección de Equipo Académico

Breve descripción del Laboratorio

La finalidad de esta asignatura es aprender a diseñar e implementar aplicaciones que utilicen los servicios proporcionados por el sistema operativo, así como adquirir los conocimientos necesarios para utilizar el mismo a nivel de usuario avanzado.

Índice

Competencias Vinculadas al Perfil del Egresado	4
Competencias Específicas	
Competencias Generales	4
Competencias del Laboratorio	4
Competencia(s) Específica(s)	4
Competencia(s) General(es)	5
Diseño Didáctico por Competencias	
Sesión de Diagnóstico	5
Evaluación de conocimientos previos	5
Presentación del tutor	6
Presentación de los estudiantes	
Presentación del programa del curso	6
Evaluación de conocimientos del laboratorio actual	
Sesión No. 1, Unidad No. 1 - Introducción	
Valor de la semana (Saber ser)	7
Conocimiento (Saber)	
Habilidades (Saber Hacer)	
Sesión No. 2, Unidad No. 1 - Introducción	
Valor de la semana (Saber ser)	
Conocimiento (Saber)	
Habilidades (Saber Hacer)	
Sesión No. 3, Unidad No. 2 - Procesos e Hilos	
Valor de la semana (Saber ser)	
Conocimiento (Saber)	
Habilidades (Saber Hacer)	
Sesión No. 4, Unidad No. 2 - Procesos e Hilos	
Valor de la semana (Saber ser)	
Conocimiento (Saber)	
Habilidades (Saber Hacer)	
Sesión No. 5, Unidad No. 2 - Procesos e Hilos	11
Valor de la semana (Saber ser)	
Conocimiento (Saber)	
Habilidades (Saber Hacer)	
Sesión No. 6, Unidad No. 2 - Procesos e Hilos y Unidad No. 3 Administración de Memoria	12
Valor de la semana (Saber ser)	12
Conocimiento (Saber)	12

Habilidades (Saber Hacer)	13
Sesión No. 7, Unidad No. 3 Administración de Memoria	13
Valor de la semana (Saber ser)	13
Conocimiento (Saber)	14
Habilidades (Saber Hacer)	14
Sesión No. 8, Unidad No. 3 Administración de Memoria	15
Valor de la semana (Saber ser)	15
Conocimiento (Saber)	15
Habilidades (Saber Hacer)	15
Sesión No. 9, Unidad No. 4 - Sistemas Especializados y Distribuidos	16
Valor de la semana (Saber ser)	16
Conocimiento (Saber)	16
Habilidades (Saber Hacer)	16
Sesión No. 10, Unidad No. 4 - Sistemas Especializados y Distribuidos	17
Valor de la semana (Saber ser)	17
Conocimiento (Saber)	17
Habilidades (Saber Hacer)	17
Sesión No. 11, Unidad No. 4 - Sistemas Especializados y Distribuidos	18
Valor de la semana (Saber ser)	18
Conocimiento (Saber)	18
Habilidades (Saber Hacer)	18
liempo de Auto-aprendizaje	19
Rúbrica de Evaluación	19
Resumen de Ponderaciones	20
Normativa Académica y Ética del Curso	20
Equipo Académico	21
Coordinador del Área	21
Sección A	21
Sección B	22
Sección C	23
Bibliografía	24

Competencias Vinculadas al Perfil del Egresado

Competencias Específicas

No.	Competencia
1	Aplica los conocimientos de su disciplina en la elaboración, fundamentación y defensa de argumentos para prevenir y resolver problemas complejos en su campo profesional, identificando y aplicando innovaciones.
2	Demuestra pensamiento crítico, actitud investigativa y rigor analítico en el planteamiento y la resolución de problemas complejos.
3	Toma decisiones profesionales con base en fundamentos teóricos, datos e información pertinente, válida y confiable.
4	Identifica oportunidades y riesgos para la innovación y adaptación de conocimientos y tecnologías para resolver problemas.
5	Demuestra destreza y habilidad en la selección, uso y adaptación de herramientas metodológicas, tecnológicas, equipos especializados y en la lectura e interpretación de datos, pertinentes al contexto de su ejercicio profesional.

Competencias Generales

No.	Competencia
1	Actualiza permanente sus conocimientos relacionados con TIC en general, apoyándose en las estrategias de aprendizaje apropiadas.
2	Maneja e Interpreta adecuadamente datos masivos, sean estos estructurados o no estructurados, facilitando su visualización e interpretación de forma eficaz en apoyo a la toma de decisiones.
3	Aplica conocimientos tecnológicos con ética profesional y respetando y cuidando los recursos naturales, humanos y financieros.
4	Aplica estándares de calidad, eficiencia y seguridad en la implementación adecuada de soluciones de software, hardware y TIC en general.
5	Aplica principios básicos de ingeniería, ciencias de computación y sistemas de información y comunicación, en la formulación y resolución adecuada de problemas complejos.

Página 5

Competencias del Laboratorio

Competencia(s) Específica(s)

No.	Competencia	Nivel de Aprendizaje
1	El estudiante desarrolla nuevos programas usando sus conocimientos en hilos y sincronización que hacen uso eficiente y óptimo de los recursos del sistema	Aplicar
2	El estudiante crea nuevas llamadas al sistema para el kernel linux usando lenguaje C y sus librerías estándar para ampliar las capacidades del kernel para comprender cómo el kernel puede limitar o dificultar la creación de un programa de usuario	Crear
3	El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.	
4	El estudiante evalúa las capacidades y características de distintos sistemas operativos identificando sus fortalezas y limitaciones con el fin de seleccionarlos y aplicarlos de manera estratégica en sus proyectos y tareas profesionales	Evaluar

Competencia(s) General(es)

No.	Competencia	Nivel de Aprendizaje
1	El estudiante explica la historia de GNU/Linux usando puntos clave en el desarrollo del mismo para entender su origen y popularidad como sistema operativo libre.	Recordar
2	El estudiante comprende la estructura fundamental de un sistema operativo mediante el análisis del código fuente del kernel Linux para comprender cómo este gestiona y administra los programas de usuario .	Comprender

Diseño Didáctico por Competencias

Esta sección organiza las sesiones del laboratorio en función de las competencias que el estudiante debe desarrollar. Cada clase incluye valores (saber ser), contenidos teóricos (saber) y habilidades prácticas (saber hacer), permitiendo un aprendizaje integral y aplicado. Las actividades están alineadas con los objetivos del curso y el perfil del egresado.

Sesión de Diagnóstico

Evaluación de conocimientos previos

Se aplicará una actividad diagnóstica con el objetivo de identificar el nivel de conocimientos y habilidades que los estudiantes poseen al inicio del curso. No influye en la nota final, pero es obligatoria para todos los estudiantes.

Tipo de Actividad	Descripción
Cuestionario	Un cuestionario de 30 preguntas sobre temas de sistemas operativos 1, relevantes para los nuevos temas de sistemas operativos 2.

Presentación del tutor

El tutor se presenta formalmente al grupo, compartiendo su formación académica, experiencia profesional y educativa, así como sus expectativas sobre el curso. También se abordan aspectos como normas de convivencia, canales de comunicación, disponibilidad para consultas y métodos de acompañamiento.

Presentación de los estudiantes

Se escogen un grupo de estudiantes al azar. En su presentación, se les pedirá que compartan información básica como su nombre, intereses personales o profesionales, experiencias previas relacionadas con el curso y sus expectativas. Esta actividad busca promover la interacción, el reconocimiento entre pares y la construcción de un entorno participativo y respetuoso.

Presentación del programa del curso

Se presenta el contenido del programa del curso, se aclaran dudas y se fomenta el compromiso del estudiante con su aprendizaje.

Evaluación de conocimientos del laboratorio actual

Se realiza una evaluación o práctica que permite conocer el grado de familiaridad de los estudiantes con las herramientas, entornos o competencias técnicas necesarias para el laboratorio actual .

Tipo de Actividad	Descripción
Cuestionario	Un cuestionario de 30 preguntas sobre temas que se impartirán durante el laboratorio de sistemas operativos 2.

Sesión No. 1, Unidad No. 1 - Introducción

Valor de la semana (Saber ser)

Nombre: Responsabilidad

Responsabilidad, en contexto de programas libres como linux, se trata de código fuente de un sistema crítico como linux, por lo que las modificaciones deben ser responsables y nunca con fines negativos.

Conocimiento (Saber)

Competencia(s)

- El estudiante explica la historia de GNU/Linux usando puntos clave en el desarrollo del mismo para entender su origen y popularidad como sistema operativo libre
- El estudiante comprende la estructura fundamental de un sistema operativo mediante el analisis del codigo fuente del kernel Linux para comprender como este gestión y administra los programas de usuario

Tema	Subtema
Introducción a Linux	Introducción a los sistemas operativos
Introducción a Linux	Introducción a Linux
Introducción a Linux	Introducción al kernel de Linux
Desarrollo de sistemas operativos	Arquitectura del kernel y estructura de código
Desarrollo de sistemas operativos	Escribir y compilar módulos del kernel

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante explica la historia de GNU/Linux usando puntos clave en el desarrollo del mismo para entender su origen y popularidad como sistema operativo libre	Ejemplo guiado	N/A
El estudiante comprende la estructura fundamental de un sistema operativo mediante el analisis del codigo fuente del kernel Linux para comprender como este gestión y administra los programas de usuario		

Sesión No. 2, Unidad No. 1 - Introducción

Valor de la semana (Saber ser)

Nombre: Pensamiento crítico

Pensamiento Crítico: Es posible que el estudiante se enfrente por primera vez, ya sea a descubrir y modificar el código del kernel de linux, o bien a modificarlo tan a fondo, es importante que fortalezca su pensamiento crítico, enfocados en este nuevo reto.

Conocimiento (Saber)

Competencia(s)

- El estudiante comprende la estructura fundamental de un sistema operativo mediante el análisis del código fuente del kernel Linux para comprender cómo este gestiona y administra los programas de usuario.
- El estudiante crea nuevas llamadas al sistema para el kernel linux usando lenguaje C y sus librerías estándar para ampliar las capacidades del kernel para comprender cómo el kernel puede limitar o dificultar la creación de un programa de usuario.

Tema	Subtema
Desarrollo de sistemas operativos	Personalizando el kernel de Linux
Desarrollo de sistemas operativos	Depuración y prueba del kernel
Llamadas al sistema	Definición y función de las llamadas al sistema
Llamadas al sistema	Flujo de llamadas del sistema
Llamadas al sistema	Llamadas comunes al sistema en Linux
Llamadas al sistema	Desarrollo de llamadas al sistema

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante comprende la estructura fundamental de un sistema operativo mediante el analisis del codigo fuente del kernel Linux para comprender como este gestión y administra los programas de usuario	Ejemplo Guiado/Cort o	0

El estudiante explica las diferencias entre ejecución concurrente,	
ejecución paralela y paralelismo en el contexto de los sistemas	
operativos y aplica este conocimiento para seleccionar y emplear	
adecuadamente herramientas de gestión de memoria y procesos en	
sus desarrollos.	

Sesión No. 3, Unidad No. 2 - Procesos e Hilos

Valor de la semana (Saber ser)

Nombre: Consistencia

Consistencia: El estudiante debe ser consistente en su participación, en este punto (y varios más adelante) será necesario utilizar el cajón de herramientas que vamos formando con cada nuevo tema, el estudiante debe demostrar consistencia en su aprendizaje y el curso para poder avanzar de manera adecuada.

Conocimiento (Saber)

Competencia(s)

El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.

Tema	Subtema
Gestión de procesos	Procesos y Gestión de Procesos
Gestión de procesos	Estados de proceso y transiciones
Gestión de procesos	Bloques de control de procesos (PCB)
Gestión de procesos	Introducción a hilos

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.	Ejemplo Guiado / Corto	0
El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.		

Sesión No. 4, Unidad No. 2 - Procesos e Hilos

Valor de la semana (Saber ser)

Nombre: Disciplina

Disciplina: Trabajar con hilos y estructuras concurrentes, se cultiva disciplina y un pensamiento ordenado, que es fundamental para el diseño de sistemas.

Conocimiento (Saber)

Competencia(s)

El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.

Tema	Subtema
Hilos, concurrencia y paralelismo	Hilos
Hilos, concurrencia y paralelismo	Concurrencia y Paralelismo
Hilos, concurrencia y paralelismo	Creación, gestión y terminación de hilos
Hilos, concurrencia y paralelismo	PThreads
Hilos, concurrencia y paralelismo	Consideraciones de diseño de subprocesos
Consideraciones de diseño de hilos	Consideraciones de diseño de subprocesos

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.	Ejemplo Guiado / Corto	N/A
El estudiante desarrolla nuevos programas usando sus conocimientos en hilos y sincronización que hacen uso eficiente y óptimo de los recursos del sistema		

Página 12

Sesión No. 5, Unidad No. 2 - Procesos e Hilos

Valor de la semana (Saber ser)

Nombre: Criterio y toma de decisiones

Criterio y toma de decisiones: Al enfrentarse a problemas como condiciones de carrera, la sincronización de procesos es necesaria, esto significa que el estudiante debe formar un criterio para decidir de manera responsable qué herramientas y métodos utilizar considerando la estabilidad y eficiencia.

Conocimiento (Saber)

Competencia

- El estudiante desarrolla nuevos programas usando sus conocimientos en hilos y sincronización que hacen uso eficiente y óptimo de los recursos del sistema
- El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y
 paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para
 seleccionar y emplear adecuadamente herramientas de gestión de memoria y
 procesos en sus desarrollos.

Tema	Subtema
Consideraciones de diseño de hilos	Condiciones de carrera
Consideraciones de diseño de hilos	Métodos de sincronización de subprocesos
Consideraciones de diseño de hilos	Mutexes, semáforos y bloqueos
Consideraciones de diseño de hilos	Detección y prevención de deadlocks

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear	Ejemplo Guiado / Corto	N/A

adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.
El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.

Sesión No. 6, Unidad No. 2 - Procesos e Hilos y Unidad No. 3 Administración de Memoria

Valor de la semana (Saber ser)

Nombre: Equidad

Equidad: La planificación/programación de CPU se trata de darle el tiempo adecuado a cada proceso en ejecución, muchas veces no se trata de igualdad y la igualdad no es lo óptimo, sino de equidad, que en términos generales significa darle a cada uno el tiempo que necesita para avanzar tanto como el resto.

Conocimiento (Saber)

Competencia

El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.

Tema	Subtema
Mecanismos de programación de CPU (Scheduling)	Programación (Scheduling)
Mecanismos de programación de CPU (Scheduling)	Programación preventiva versus no preventiva
Mecanismos de programación de CPU (Scheduling)	Algoritmos de programación comunes
Mecanismos de programación de CPU (Scheduling)	Scheduling en Linux
Fundamentos de gestión de memoria	Memoria
Fundamentos de gestión de memoria	Jerarquía de memoria

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante crea nuevas llamadas al sistema para el kernel linux usando lenguaje C y sus librerías estándar para ampliar las capacidades del kernel para comprender cómo el kernel puede limitar o dificultar la creación de un programa de usuario	Ejemplo guiado/ Corto	N/A
El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas		

operativos y aplica este conocimiento para seleccionar y emplear	
adecuadamente herramientas de gestión de memoria y procesos en	
sus desarrollos.	

Sesión No. 7, Unidad No. 3. - Administración de Memoria

Valor de la semana (Saber ser)

Nombre: Precaución

Precaución: La paginación, segmentación y protección de memoria son temas delicados, comprender la importancia de estos temas, es garantizar el buen funcionamiento del sistema

Conocimiento (Saber)

Competencia

El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.

Tema	Subtema
Fundamentos de gestión de memoria	Gestión de la memoria
Fundamentos de gestión de memoria	Memoria física y paginación
Fundamentos de gestión de memoria	Técnicas de asignación de memoria
Memoria virtual	Paginación y segmentación
Memoria virtual	Tablas de páginas y TLB
Memoria virtual	Fallos de página y manejo
Memoria virtual	Intercambio y paginación por demanda

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.	Ejemplo Guiado / Corto	N/A

El estudiante comprende la estructura fundamental de un sistema	
operativo mediante el analisis del codigo fuente del kernel Linux para	
comprender como este gestión y administra los programas de	
usuario	

Sesión No. 8, Unidad No. 3. - Administración de Memoria

Valor de la semana (Saber ser)

Nombre: Ética

Ética: Los mecanismos de control de acceso, privilegio y seguridad deben programarse de manera responsable, siendo que somos personas que potencialmente estarán detrás de sistemas que requieren seguridad importante, es esencial mantener una ética intachable

Conocimiento (Saber)

Competencia

El estudiante explica las diferencias entre ejecución concurrente, ejecución paralela y paralelismo en el contexto de los sistemas operativos y aplica este conocimiento para seleccionar y emplear adecuadamente herramientas de gestión de memoria y procesos en sus desarrollos.

Tema	Subtema
Protección y Seguridad	Protección
Protección y Seguridad	Privilegios de modo de usuario y kernel
Protección y Seguridad	Control de acceso
Protección y Seguridad	Seguridad
Protección y Seguridad	Modelos y principios de seguridad
Protección y Seguridad	Vulnerabilidades del sistema operativo y medidas de seguridad

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante comprende la estructura fundamental de un sistema operativo mediante el analisis del codigo fuente del kernel Linux para comprender como este gestión y administra los programas de usuario	Cuestionario / Corto	N/A

Página 19

Sesión No. 9, Unidad No. 4 - Sistemas Especializados y Distribuidos

Valor de la semana (Saber ser)

Nombre: Adaptabilidad

Adaptabilidad: Explorar diferentes enfoques es indispensable para aumentar nuestra biblioteca personal de conocimiento. Una solución puede ser implementada de muchas formas, elegir la forma correcta es crítico para el futuro del sistema y por eso debe analizarse con cuidado cómo adaptarse a nuevos entorno

Conocimiento (Saber)

Competencia

El estudiante evalúa las capacidades y características de distintos sistemas operativos identificando sus fortalezas y limitaciones con el fin de seleccionarlos y aplicarlos de manera estratégica en sus proyectos y tareas profesionales

Tema	Subtema
Virtualización	Virtualización
Virtualización	Hipervisores y máquinas virtuales
Virtualización	Hosted vs Bare Metal
Virtualización	Contenedores y Máquinas Virtuales
Virtualización	Traducción Binaria y Paravirtualización

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante evalúa las capacidades y características de distintos sistemas operativos identificando sus fortalezas y limitaciones con el fin de seleccionarlos y aplicarlos de manera estratégica en sus proyectos y tareas profesionales	Actividad / Corto	N/A

Sesión No. 10, Unidad No. 4 - Sistemas Especializados y Distribuidos

Valor de la semana (Saber ser)

Nombre: Innovación

Innovación: Al entender las limitaciones de la tecnología, es inevitable buscar formas alternativas de obtener resultados, las computadoras han evolucionado muchas veces a lo largo de la historia, lo mismo ha sucedido con los sistemas operativos, de manera que es necesario continuar esa evolución e innovación

Conocimiento (Saber)

Competencia

El estudiante evalúa las capacidades y características de distintos sistemas operativos identificando sus fortalezas y limitaciones con el fin de seleccionarlos y aplicarlos de manera estratégica en sus proyectos y tareas profesionales

Tema	Subtema
Sistemas operativos móviles e integrados	Características del sistema operativo móvil (Android, iOS)
Sistemas operativos móviles e integrados	Características del sistema operativo integrado (FreeRTOS)
Sistemas operativos móviles e integrados	Restricciones de recursos en sistemas integrados
Sistemas operativos móviles e integrados	Compilación cruzada y desarrollo para plataformas integradas
Sistemas remotos y distribuidos	Llamadas a procedimientos remotos (RPC)

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante evalúa las capacidades y características de distintos sistemas operativos identificando sus fortalezas y limitaciones con el fin de seleccionarlos y aplicarlos de manera estratégica en sus proyectos y tareas profesionales	Guiado /	N/A

Sesión No. 11, Unidad No. 4 - Sistemas Especializados y Distribuidos

Valor de la semana (Saber ser)

Nombre: Trabajo en equipo

Trabajo en equipo: Cuando se trata de sistemas distribuidos, hablamos de que se logra más teniendo muchos equipos trabajando juntos, esto aplica para todo, no solo la programación, es importante saber adaptarse a un equipo y colaborar para lograr metas comunes, y a veces, individuales.

Conocimiento (Saber)

Competencia

El estudiante evalúa las capacidades y características de distintos sistemas operativos identificando sus fortalezas y limitaciones con el fin de seleccionarlos y aplicarlos de manera estratégica en sus proyectos y tareas profesionales

Tema	Subtema
Sistemas remotos y distribuidos	Sistemas Distribuidos
Sistemas remotos y distribuidos	Arquitectura de sistemas distribuidos
Sistemas operativos en la nube	Virtualización y Gestión de Recursos en Sistemas en la Nube
Sistemas operativos en la nube	Soporte del sistema operativo para multi-tenencia y elasticidad
	Sistemas operativos específicos de la nube (OSv, MirageOS)
Sistemas operativos en la nube	Desafíos y soluciones de seguridad en la nube

Habilidades (Saber Hacer)

Competencia	Tipo de Actividad	Ponderación
El estudiante evalúa las capacidades y características de distintos sistemas operativos identificando sus fortalezas y limitaciones con el fin de seleccionarlos y aplicarlos de manera estratégica en sus proyectos y tareas profesionales	Actividad / Corto	N/A

Tiempo de Auto-aprendizaje

Tipo	Horas de Auto-aprendizaje
Proyectos	30
Prácticas	35
Tareas	30
Total	95

Rúbrica de Evaluación

Cada una de las actividades del laboratorio (proyectos, prácticas, tareas y otras) cuenta con una rúbrica de evaluación específica, la cual está detallada en el documento que se entrega al estudiante al momento de asignar la actividad. Estas rúbricas describen los criterios de evaluación, niveles de desempeño esperados y la ponderación correspondiente de cada aspecto evaluado.

Es **responsabilidad del estudiante** leer detenidamente la rúbrica asignada antes de iniciar el desarrollo de la actividad. Comprender los criterios de evaluación no solo permite orientar adecuadamente el trabajo, sino también mejorar el desempeño académico y fomentar la autorregulación del aprendizaje.

En caso de no recibir la rúbrica al momento de la asignación, el estudiante **debe solicitarla directamente al tutor académico**, ya que constituye una herramienta esencial para el cumplimiento de los objetivos de aprendizaje y la evaluación transparente.

Resumen de Ponderaciones

Tipo	Valor
Actividades en Clase	0
Proyectos	50
Prácticas	25
Tareas	15
Examen Final	10
Total	100

Normativa Académica y Ética del Curso

En concordancia con el perfil del estudiante de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, se espera un alto nivel de compromiso con la excelencia académica y la ética profesional. Por ello, que se establece los siguientes lineamientos de carácter obligatorio que regulan el comportamiento académico del estudiante:

Plagio y copias

- Todo proyecto será sometido a verificación para confirmar su autoría y originalidad, con la finalidad de evitar cualquier plagio, copia o que la actividad no haya sido realizada por el estudiante.
- Cualquier evidencia de lo antes descrito en las distintas actividades será sancionada con una calificación de 0 (cero) y el caso será reportado al Docente quien a su vez informará a la Escuela de Ciencias y Sistemas para su seguimiento institucional.

Prórrogas y reposiciones

- No se otorgarán prórrogas para entregas de actividades.
- No se permitirá la reposición de proyectos bajo ninguna circunstancia.

Requisitos para evaluación final del curso

- Es obligatorio aprobar el laboratorio para tener derecho a la evaluación final del curso.
- La calificación de prácticas, proyectos y otras actividades que se indique será asignada de forma presencial, en la fecha y hora establecidas por el tutor académico.

Asistencia

- Para obtener la nota del laboratorio, se requiere un mínimo del 80% de asistencia a las sesiones de laboratorio.
- En caso de inasistencia, sólo se aceptarán justificaciones válidas respaldadas por constancia oficial.

Entregas

 No se aceptarán entregas tardías de tareas, prácticas, exámenes cortos, exámenes finales o proyectos sin justificación.

Medio oficial de entrega

 La plataforma UEDI de la Facultad será el único medio oficial para la entrega de actividades del curso.

Equipo Académico

Coordinador del Área

Nombre:	Correo electrónico:			
Luis Fernando Espino Barrios	usac.sistemas@gmail.com			

Sección A

Docente

Nombre del Docente Edgar Rene Ornelis Hoil	Correo electrónico ornelyz@ingenieria.usac.edu.gt

	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado
Día	Х		х			
Horario	7:10 - 8:50		9:00 - 10:40			
Lugar	Google Meet		Google Meet			

Tutor(es)

Nombre del Tutor	Steven Sullivan Jocol Gomez
Correo electrónico institucional	2767528050101@ingenieria.usac.edu.gt

Tipo		Lunes	Martes	Miércoles	Jueves	Viernes	Sábado
Clase	Día					X	
	Horario					17:20 - 19:00	
	Lugar					Google Meet	
Atención al Estudiante	Día						
	Horario						
	Lugar						

Bibliografía

- A. Silberschatz, P. Galvin, G. Gagne, Wiley (2005). Operating System Concepts. Séptima edición
- J. Carretero, P. De Miguel, F. García, F. Pérez, Mc Graw Hill (2001). Sistemas Operativos, Una Visión Aplicada. Primera edición.
- Andrew S. Tanenbaum, Prentice Hall (2003). Sistemas Operativos Modernos. Segunda edición.