UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS

LABORATORIO SOFTWARE AVANZADO

CÓDIGO	0780	CRÉDITOS	5
ESCUELA	Ciencias y Sistemas	ÁREA	Desarrollo de Software
PRE REQUISITO	0785	POST REQUISITOS	Ninguno
CATEGORÍA	Obligatorio	SEMESTRE	Segundo Semestre 2023
CATEDRÁTICO(A):	Ing. Marco Tulio Aldana Prillwitz	AUXILIARES	Madeline Pérez
HORAS POR SEMANA DEL CURSO	4	MINUTOS QUE SE IMPARTE EL LABORATORIO	100
DÍAS QUE SE IMPARTE EL CURSO	Lunes y miércoles	DÍAS QUE SE IMPARTE EL LABORATORIO	Martes
HORARIO DEL CURSO	19:00 - 20:40	HORARIO DEL LABORATORIO	17:20 - 19:00

DESCRIPCIÓN DEL CURSO:

Software Avanzado es un curso profesional que pertenece al área de software de la carrera de Ingeniería en Ciencias y Sistemas, el cual trata sobre conceptos fundamentales de ingeniería de software, se tiene especial énfasis en tecnologías modernas en la nube, devops y metodologías ágiles.

OBJETIVOS LABORATORIO:

 Reconocer la importancia de aplicar ingeniería de software durante el desarrollo de un proyecto y un producto.

- Poner en práctica técnicas de orquestación de procesos en arquitectura orientada a servicios
- Visualizar el avance de ejecución el desarrollo de un producto a través de métricas estándar de código y equipos de trabajo.

METODOLOGÍA:

- Clases teóricas de conceptos generales.
- Clase práctica de cómo realizar implementación de tecnologías específicas.
- Entrega de tareas y tareas prácticas.
- Desarrollo de un proyecto final.

EVALUACIÓN DEL RENDIMIENTO ACADÉMICO:

La nota mínima para aprobar el laboratorio es de 61 puntos de un total de 100.

Tareas Prácticas	25 puntos	
Práctica 1	10%	
Práctica 2	15%	
Práctica 3	20%	
Práctica 4	25%	
Práctica 5	30%	
5 Exámenes cortos	5 puntos (1 pts. c/u)	
Proyecto	75 puntos	
Fase 1	25%	
Fase 2	35%	
Fase 3	40%	

CONTENIDO DEL LABORATORIO:

- 1. SOA: conceptos básicos, seguridad, coreografía, orquestación.
- 2. Nube: AWS y GCP.
- 3. Testing: Unitario y de Integración.
- 4. DevOps: desarrollo, análisis de código, liberación y entrega
- 5. Contenedores: Docker
- 6. Ansible: conceptos, CLI, inventarios, playbooks
- 7. Kubernetes: conceptos básicos

PUNTOS IMPORTANTES A CONSIDERAR:

- Para tener derecho a nota de laboratorio se debe cumplir con el 90% de asistencia a clase de laboratorio al menos que se presente una constancia médicade una institución pública donde indique la suspensión por enfermedad.
- La tarea que no se entregue a tiempo no será tomada en cuenta para calcular la nota promedio.

BIBLIOGRAFIA:

- [1] Roger S. Presman. Ingeniería de Software. Un enfoque práctico. McGraw Hill, Quinta Edición.E.U.A., 2007.
- [2] Documentos Elaborados por Catedrático del Curso. Ian Sommerville. Ingeniería de Software. Prentice Hall. 7ma edición.
- [3] Adair, J., Decision Making and Problem Solving Strategies, 2nd Ed., Kogan Page, E.U.A. 2007.

- [4] Gerald Kontoya and Ian Sommerville, Requirements Engineering Process and Techniques
- [5] Erl, Thomas. SOA Principles of Service Desing. Prentice Hall. 2008.
- [6] HashiCorp. Terraform. https://www.terraform.io
- [7] Docker docs. https://docs.docker.com