

PROGRAMA DEL CURSO

I. Información General					
NOMBRE DEL CURSO: Introducción a la Programación y Computación 1					
CODIGO:	0770	CREDITOS:	4		
ESCUELA:	Ciencias y Sistemas	AREA A LA QUE PERTENECE:	Desarrollo de Software		
PRE REQUISITO:	33 créditos y 0103 Matemática Básica 2	POST REQUISITO:	0771 Introducción a la Programación y Computación 2 0796 Lenguajes Formales y de Programación.		
CATEGORIA:	Obligatorio	SEMESTRE:	1er. Semestre 2018		
CATEDRÁTICO (A):	Ing. Herman Igor Véliz Linares	AUXILIAR:	David Alberto García Illescas Manuel Antonio Fuentes Fuentes		
EDIFICIO:	T-3	SECCIÓN:	D		
SALÓN DEL CURSO:	404	SALON DEL LABORATORIO:	T3 313 y 402		
HORAS POR SEMANA DEL CURSO:	4	HORAS POR SEMANA DEL LABORATORIO:	4		
DÍAS QUE SE IMPARTE EL CURSO:	Martes y Jueves	DIAS QUE SE IMPARTE EL LABORATORIO:	Jueves y Sabado		
HORARIO DEL CURSO:	7:10 AM – 8:50 AM	HORARIO DEL LABORATORIO:	Jueves: 9:10 - 10:50 Sabado: 10:50 - 12:30		

II. DESCRIPCIÓN DEL CURSO:

El curso es el acercamiento inicial del estudiante de la carrera de sistemas, a la programación mediante el uso de disciplinas y metodologías especializadas. El curso se fundamenta en el concepto de algoritmo para la resolución de problemas de programación, enfatizando el uso del paradigma orientado a objetos. Se introducen conceptos básicos de UML como guía para el diseño de sistemas orientados a objetos. Se acerca al estudiante al conocimiento de los principales algoritmos de búsquedas y ordenamientos. Se cubre una parte importante de las estructuras de datos, los tipos de datos abstractos. Asimismo, el estudiante conocerá el lenguaje Java como el lenguaje oficial de programación del curso.

III. OBJETIVOS:

General

• Lograr que el estudiante adquiera la habilidad de programar y los conocimientos básicos de la programación utilizando el paradigma orientado a objetos.

Específico

- 1. Integrar al estudiante a la tecnología de la computación.
- 2. Conocer las diferentes metodologías de programación.
- 3. Organizar soluciones utilizando un lenguaje de programación.
- 4. Adquirir la habilidad de hacer algoritmos.
- 5. Aprender a elaborar diseños de clases preliminares en UML.
- 6. Analizar los problemas con metodología orientada a objetos.
- 7. Conocer el lenguaje Java como el primer lenguaje de programación para computadoras.

IV. METODOLOGÍA:

· Clases diarias.

- Elaboración de investigaciones y tareas.
- Práctica de exámenes cortos y parciales.
- Laboratorio taller.
- Elaboración de proyectos de programación.

V. EVALUACION DEL RENDIMIENTO ACADÉMICO:				
Clase teórica (70 puntos)		Clase práctica (30 puntos)		
Descripción	Pts.	Descripción	Pts.	
Tareas, Cortos y Asistencia	09	Tareas y Tareas Prácticas	20	
Primer parcial	08	Prácticas	20	
Segundo parcial	14	Proyectos	40	
Tercer parcial	14	Exámenes cortos	10	
Laboratorio	30			
		-		
Zona total	75			
Examen Final	25	Zona total	90	
		Examen Final	10	
Total	100			
		-		
		Total	100	
El curso se gana con 61 pts. de 100. Y el laboratorio de gana con 61 pts. de 100.				

VI. CONTENIDO

- 1. Introducción
 - 1.1 Conceptos computacionales
 - 1.1.1 Computadora
 - 1.1.2 Hardware
 - 1.1.3 Firmware
 - 1.1.4 Software
 - 1.2 Organización
 - 1.2.1 CPU
 - 1.2.2 Memoria principal
 - 1.2.3 Memoria secundaria
 - 1.2.4 Dispositivos E/S
 - 1.2.5 Periféricos
 - 1.3 Lenguajes de programación
 - 1.3.1 Lenguaje de máquina
 - 1.3.2 Lenguajes de bajo nivel
 - 1.3.3 Lenguajes de alto nivel
 - 1.4 Resolución de problemas computacionales
 - 1.4.1 Toma de requerimientos
 - 1.4.1.1 Plan de requerimientos
 - 1.4.2 Análisis del problema
 - 1.4.3 Diseño del algoritmo
 - 1.4.4 Codificación
 - 1.4.5 Compilación y ejecución
 - 1.4.6 Verificación y depuración
 - 1.4.7 Documentación
 - 1.4.7.1 Plan de proyectos de software
 - 1.4.7.2 Estrategias de Marketing
- 2. Programación modular y estructuras básicas
 - 2.1 Secuencial y procedural: metodología Top-Down.
 - 2.2 Variables: concepto, manipulación y asignación.
 - 2.3 Tipos de datos (primitivos y construidos por el usuario)
 - 2.4 Operadores aritméticos
 - 2.5 Operadores relacionales y lógicos
 - 2.6 Estructuras de control condicionales
 - 2.6.1 Si Sino (if else)
 - 2.6.2 En caso (switch / case)

- 2.7 Estructuras cíclicas (bucles, loops)
 - 2.7.1 Para (for)
 - 2.7.2 Mientras (while)
 - 2.7.3 Repetir Hasta (Repeat Until / do-while)
- 2.8 Las rutinas
 - 2.8.1 Procedimiento y función
 - 2.8.2 Entorno de las variables (alcance o ámbito)
 - 2.8.3 Los parámetros
 - 2.8.3.1 Por variables
 - 2.8.3.2 Por valor
 - 2.8.4 El valor de retorno
- 2.9 Modularidad
 - 2.9.1 Segmentos por rutina
 - 2.9.2 Uso adecuado de prefijos
 - 2.9.3 Documentación interna
 - 2.9.4 Legibilidad y entendimiento
- 2.10 Recursividad
- 3. Metodología orientada a objetos
 - 3.1 Concepto de abstracción y clasificación
 - 3.2 Clases y objetos
 - 3.3 Mensaies v métodos
 - 3.4 El principio el encapsulamiento
 - 3.5 Los miembros de una clase
 - 3.5.1 Atributos
 - 3.5.2 Métodos (operaciones)
 - 3.5.3 Constructores y destructores
 - 3.6 Modificadores de visibilidad
 - 3.6.1 Privado
 - 3.6.2 Público
 - 3.6.3 Protegido
 - 3.7 Relaciones entre clases y objetos
 - 3.7.1 Asociación
 - 3.7.2 Agregación y composición
 - 3.7.3 Herencia (simple y múltiple)
 - 3.8 Polimorfismo
 - 3.8.1 Sobrecarga de métodos
 - 3.8.2 Virtualización
 - 3.9 Construcciones abstractas
 - 3.9.1 Clase abstracta3.9.2 Interfase
 - 3.10 Conceptos avanzados
 - 3.10.1 Miembros estáticos (static) y miembros de instancia
 - 3.10.2 Referencia "this"
 - 3.10.3 Clases paramétricas (plantilla de clases).
 - 3.11 Principios básicos de UML (diagrama de clases)
 - 3.11.1 Definición de clases y sus relaciones
 - 3.11.2 Ámbito de las propiedades, Métodos
 - 3.11.3 Diseño de programas
 - 3.11.4 Asociaciones y restricciones, clases de asociaciones, Multiplicidad, Dependencia
 - 3.11.5 Relaciones múltiples (asociativas) y reflexivas
- 4. Programación orientada a objetos Laboratorio
 - 4.1 Lenguaje Java (clases, atributos, métodos)
 - 4.2 Constructor y destructor
 - 4.3 Tipos de atributos
 - 4.4 Operaciones (aritméticos, relacionales y lógicos)
 - 4.5 Estructuras de control condicionales (if else, switch, ?:)

- 4.6 Estructuras cíclicas (for, while, do-while)
- 4.7 Tipos de accesos (public, private, protected)
- 4.8 Manejo de variables.
- 4.9 Métodos: funciones/procedimientos y recursividad.
- 5. Estructuras algorítmicas
 - 5.1 Arreglos vectoriales de datos
 - 5.1.1 Conceptos: elementos, longitud, indexación, representación en memoria.
 - 5.1.2 Arreglos bidimensionales (matrices): representación en memoria.
 - 5.1.3 Arreglos n-dimensionales (multidimensionales).
 - 5.1.4 Ejemplos, técnicas de acceso y recomendaciones.
 - 5.2 Las cadenas de caracteres
 - 5.2.1 Concepto: diferencia con arreglos de caracteres.
 - 5.2.2 Cadenas estáticas (ej: String) y dinámicas (ej: StringBuffer).
 - 5.2.3 Operaciones y métodos.
 - 5.3 Búsqueda de datos en arreglos
 - 5.3.1 Secuencial 5.3.2 Binaria
 - 5.4 Ordenamiento de datos en arreglos
 - 5.4.1 Burbuja
 - 5.4.2 Por inserción
 - 5.4.3 Por selección
 - 5.4.4 Quick Sort
 - 5.5 La pila (Stack)
 - 5.5.1 Política de acceso a datos (LIFO) y operaciones.
 - 5.6 La cola (Queue)
 - 5.6.1 Política de acceso a datos (FIFO) y operaciones.
 - 5.6.2 Representaciones: simple y circular.
 - 5.7 El uso de Heap
 - 5.7.1 Asociación a la pila
 - 5.7.2 Tomar y devolver al heap
 - 5.7.3 Usos con las pilas y las colas
- 6. Colecciones de datos
 - 6.1 Los índices y el apuntador simple
 - 6.1.1 El apuntador subíndice
 - 6.1.2 Almacenamiento
 - 6.1.3 Ordenamiento
 - 6.2 Los registros
 - 6.2.1 Concepto y definición por campos
- 7. Flujos de bytes y manipulación de archivos
 - 7.1 Concepto: modelo productor-consumidor y flujo (stream).
 - 7.2 Tipos de flujos
 - 7.3 Tipos de archivos
 - 7.3.1 Archivos de texto
 - 7.3.2 Archivos binarios
 - 7.4 Operaciones básicas
 - 7.4.1 Abrir v cerrar
 - 7.4.2 Lectura, escritura y posicionamiento
 - 7.4.3 Localización del final del archivo
- 8. Los tipos de datos abstractos
 - 8.1 Tipos de apuntadores (estáticos y dinámicos)
 - 8.2 Listas simples
 - 8.3 Listas doblemente encadenadas
 - 8.4 Pilas usando listas
 - 8.5 Colas usando listas
 - 8.6 Listas ortogonales
 - 8.7 Listas n-encadenadas

VII. CLÁUSULAS RESTRICTIVAS:

El perfil del estudiantes de la facultad de Ingeniería de la Universidad de San Carlos de Guatemala, exige una alta calidad en la excelencia académica y ética profesional. Se establecen en este curso los siguientes lineamientos que regulan el comportamiento del estudiante:

- Copias en exámenes, cortos, proyectos, tareas e investigaciones tienen cero de nota.
- La reposición de cualquier parcial se hará tomando la misma nota del examen siguiente, siempre y cuando no tenga más de 4 inasistencias a clase y se justifique, debidamente comprobado, por escrito.
- El examen final NO tiene reposición.
- No hay reposición de proyectos.
- Cualquier proyecto, tarea o investigación que se entregue después de la fecha calendarizada tiene 30 puntos menos cada día de atraso.
- Los exámenes resueltos a lápiz no tienen derecho a revisión.
- Es obligatorio ganar el laboratorio para tener derecho a evaluación total del curso.
- Para poder optar a sustentar cada uno de los exámenes parciales deberá entregarse completamente resuelta cada una de las tareas especiales pre-examen.
- Para poder optar a la revisión de la zona final es obligatorio haber asistido a dos exámenes parciales y al examen final.

VIII. BIBLIOGRAFÍA:

- JOYANES, L. y ZAHONERO, I. "Programación en Java 2 (algoritmos, estructura de datos y programación orientada a objetos)". España, McGraw-Hill / Interamericana de España, S. A. 2002, PP 725
- BUDD, Timothy. "Introducción a la programación orientada a objetos", EUA, Addison-Wesley, Iberoamericana, S. A. 1994, PP. 409
- JOYANES, L. "Programación en Tubo Pascal Versiones 5.5, 6.0, y 7.0", (2da Edición), México, McGraw-Hill / Interamericana de España, S. A. 1995, PP. 914
- Manuales de Referencia de Java, http://www.sun.com/java>.
- Cualquier otro material (escrito o digital) entregado en clase.

Secciones de IPC 1				
Sección A	Ing. Byron Zepeda	T-7 201 07:10 - 08:50 Ma-Ju		
Sección B	Ing. William Escobar	T-7 102 07:10 - 08:50Ma- Ju		
Sección C	Ing. Moisés Velásquez	T-3 114 07:10 - 08:50Ma- Ju		
Sección D	Ing. Herman Véliz	T-3 404 07:10 - 08:50Ma- Ju		
Sección E	Ing. Neftalí Calderón	T-7 101 07:10 - 08:50Ma- Ju		