UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA EN CIENCIAS Y SISTEMAS

NOMBRE DEL CURSO: Arquitectura de Computadoras y Ensambladores 1

CODIGO:	778	CREDITOS:	5
			Ciencias de
	Ciencias y		la
ESCUELA:	Sistemas	AREA:	Computación
			281
	796		779
PRERREQUISITO:	964	POSTREQUISITO:	970
CATEGORIA:	Obligatorio	SECCION:	В
HORAS POR SEMANA		HORAS POR	
DEL CURSO:	4	SEMANA	2
		DE	
		LABORATORIO:	
DIAS QUE SE IMPARTE EL	Jueves		
CURSO:	Sábado	DIAS DE	Jueves
		LABORATORIO	
		HORARIO DE	
HORARIO DEL CURSO:	17:20 – 19:00	LABORATORIO:	15:00 – 16:40

DESCRIPCIÓN DEL LABORATORIO:

El laboratorio del curso de Arquitectura de Computadoras y Ensambladores 1, trata sobre la parte práctica del curso. Se encarga de la aplicación de electrónica digital haciendo uso de Microcontroladores. Refuerza los conocimientos de electrónica digital y secuencial. Además de entender el funcionamiento de programas a bajo nivel, y manipular el uso de la memoria en los programas informáticos.

OBJETIVO GENERAL:

Poner en práctica los conceptos aprendidos sobre la arquitectura de un computador.

OBJETIVOS ESPECÍFICOS:

- 1. Que el estudiante sea capaz de desarrollar aplicaciones con entradas y salidas, tanto digitales como análogas haciendo uso de microcontroladores.
- 2. Poner en práctica los conocimientos de operaciones aritméticas básicas a bajo nivel.
- 3. Comprender el uso de la memoria de video en los computadores.
- 4. Que el estudiante conozca el impacto del Lenguaje Ensamblador en las Ciencias de la Computación.

HABILIDADES:

- 1. Conocimiento de programación del lenguaje utilizado por los microcontroladores.
- 2. Conocer las funciones básicas de salida serial.
- 3. Comprensión de la importancia y aplicación del código intermedio en la construcción de software.
- 4. Comprensión de los requerimientos que se les planteen en los enunciados a lo largo del curso.

COMPETENCIAS:

- 1. Interpretar parámetros utilizados en robótica.
- 2. Comprender el uso de motores
- 3. Aplicar herramientas de análisis léxico y sintáctico para la resolución de problemas.
- 4. Crear soluciones funcionales aplicando los conceptos de compiladores.

METODOLOGÍA:

- Se impartirán clases presenciales para fortalecer el conocimiento de los diferentes Microcontrolares.
- Elaboración de tareas para conocer la teoría sobre las herramientas utilizadas en la práctica.
- Se realizarán prácticas y proyectos para poder evaluar los conceptos adquiridos en clase sobre la arquitectura de computadoras.

EVALUACIÓN DEL RENDIMIENTO ACADÉMICO:

El laboratorio tiene una ponderación de 30 puntos distribuidos de la siguiente manera.

Actividad	Ponderación	Porcentaje
3 Tareas Prácticas (Arduino)	5.4	18%
2 Prácticas (Ensamblador)	5.4	18%
Proyecto 1 (Arduino)	6	20%
Proyecto 2 (Ensamblador)	7.5	25%
3 Cortos	1.8	6%
4 Tareas	1.2	4%
Final	2.7	9%
Total	30	100.00%

Para aprobar el laboratorio se debe tener una nota final igual o mayor al 61% de los puntos.

OBSERVACIONES:

- La calificación de los proyectos de laboratorio es personal acoplándose al día y horario que se indique previamente.
- Copias parciales o totales de los proyectos tendrán una nota de 0 puntos y los responsables serán reportados a la Escuela de Ingeniería en Ciencias y Sistemas.
- Se debe de mandar los archivos entregables en fechas establecidas para tener derecho a calificación.

C

CONTENIDO:

PRIMERA UNIDAD: Arquitectura del Computador

Sesión 1 - Semana del 22 al 28 de enero, Clase Teórica

- 1.1. Introducción al curso y repaso.
 - 1.2.1.Reseña histórica
 - 1.2.2.Microarquitecturas
 - 1.2.3. Arquitectura Von Neumann
 - 1.2.4. CISC vs RISC

2. SEGUNDA UNIDAD: Microcontroladores

Sesión 2 - Semana del 29 de enero al 4 de febrero, Clase Práctica

- 2.1. Definición de microncontroladores
 - 2.1.1. Arduino
 - 2.1.2. Software Arduino
 - 2.1.3. Estructuras de control
 - 2.1.4. Entradas y salidas de Arduino

Sesión 3 - Semana del 5 al 11 de febrero, Clase Teórica

- 2.1.5. Pantalla LCD
- 2.1.6. Aplicaciones.

Sesión 4 - Semana del 12 al 18 de febrero, Clase Teórica

- 2.2. Bluetooth
 - 2.2.1. Historia
 - 2.2.2. Módulos

3. TERCERA UNIDAD: Lenguaje Ensamblador

Sesión 5 - Semana del 19 al 25 de febrero, Clase Teórica

- 3.1. Assembler
 - 3.1.1. Historia
 - 3.1.2. Mnemónico
- 3.2. Herramientas
 - 3.2.1. NASM
 - 3.2.2. DOS
 - 3.2.3. DOSBox
 - 3.2.4. Ejemplos

Sesión 6 - Semana del 26 de febrero al 4 de marzo, Clase Teórica

- 3.3. Registros
 - 3.3.1. Registros de uso general
 - 3.3.2. Herramientas recomendadas
- 3.4. Instrucciones
 - 3.4.1. Instrucciones de Movimiento
 - 3.4.2. Instrucciones Aritméticas
 - 3.4.3. Instrucciones Lógicas
 - 3.4.4. Instrucciones de Bifurcación
 - 3.4.5. Instrucciones de Control
 - 3.4.6. Instrucciones de Software
- 3.5. Declaración de datos
 - **3.5.1.** La Pila

Sesión 7 - Semana del 5 al 11 de marzo, Clase Teórica

- 3.6. Funciones y procedimientos
 - 3.6.1. Etiquetas
 - 3.6.2. Procedimientos
 - 3.6.3. Macros

Sesión 8 - Semana del 12 al 18 de marzo, Clase Teórica

- 3.7. Interrupciones
 - 3.7.1. Rutinas auxiliares

. Semana del 19 al 25 de marzo, receso estudiantil por semana de huelga. Semana del 26 de marzo al 1 de abril, Semana Mayor

Sesión 9 - Semana del 2 al 8 de abril, Clase Teórica

- 3.8. Modo Video
 - 3.8.1. VGA
 - 3.8.2. Modos de video

Sesión 10 - Semana del 9 al 15 de abril, Clase Teórica-Práctica

- 3.9. Modos de Video
 - 3.9.1. Mapeo Lexicográfico
 - 3.9.2. Sistema Cartesiano

Sesión 11 - Semana del 16 al 22 de abril, Clase Teórica-Práctica

- 3.10. Aplicaciones
 - 3.10.1. Ejemplo de aplicación de bajo nivel

Sesión 12 - Semana del 23 al 29 de abril, clase Teórica-Práctica

- 3.10.2. Utilización de marcos
- 3.10.3. Utilización de etiquetas

CALENDARIZACIÓN DE ACTIVIDADES:

- 1. Tarea Práctica Uno:
 - 1.1. Publicación de enunciado: domingo 04 de febrero
 - 1.2. Entrega: lunes 12 de febrero
- 2. Tarea Uno:
 - 2.1. Publicación de enunciado: viernes 02 de febrero
 - 2.2. Entrega: viernes 09 de febrero
- 3. Tarea Práctica Dos:
 - 3.1. Publicación de enunciado: lunes 12 de febrero
 - 3.2. Entrega: lunes 19 de febrero
- 4. Tarea Dos:
 - 4.1. Publicación de enunciado: viernes 16 de febrero
 - 4.2. Entrega: viernes 23 de febrero
- 5. Primer Examen Corto:
 - 5.1. Realización: sábado 17 de febrero
- 6. Tarea Práctica Tres:
 - 6.1. Publicación de enunciado: lunes 19 de febrero
 - 6.2. Entrega: lunes 26 de febrero
- 7. Tarea Tres:
 - 7.1. Publicación de enunciado: viernes 23 de febrero
 - 7.2. Entrega: viernes 02 de marzo
- 8. Primer Proyecto:
 - 8.1. Publicación de enunciado: lunes 26 de febrero
 - 8.2. Entrega: sábado 17 de marzo
- 9. Segundo Examen Corto:
 - 9.1. Realización: sábado 10 de marzo
- 10. Práctica Uno:
 - 10.1. Publicación de enunciado: sábado 17 de marzo
 - 10.2. Entrega: sábado 31 de marzo
- 11. Práctica Dos:
 - 11.1. Publicación de enunciado: sábado 31 de marzo
 - 11.2. Entrega: lunes 09 de abril
- 12. Tarea Cuatro:
 - 12.1. Publicación de enunciado: viernes 13 de abril
 - 12.2. Entrega: viernes 20 de abril
- 13. Tercer Examen Corto:
 - 13.1. Realización: sábado 14 de abril
- 14. Segundo Proyecto:
 - 14.1. Publicación de enunciado: lunes 09 de abril
 - 14.2. Entrega: miércoles 9 de mayo
- 15. Examen Final:
 - 15.1. Realización: sábado 28 de abril

16. Conferencia:

- 16.1. Realización de conferencia sección A: segunda semana de marzo
- 16.2.Realización de conferencia sección B: cuarta semana de febrero y primera semana de marzo

La calendarización de las conferencias puede variar según la disponibilidad de los conferencistas.

- 17. Receso estudiantil:
 - 4.1 Semana del 19 al 25 de marzo, receso estudiantil por semana de huelga.
- 5. Semana Mayor:
 - 5.1 Semana del 26 de marzo al 1 de abril, Semana Mayor

BIBLIOGRAFÍA:

- 1. Los microprocesadores INTEL Arquitectura programación e interfaz de los procesadores 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro y Pentium II, Barry Brey. Editorial: Prentice Hall, Septima Edición.
- 2. PC INTERNO, Autor: Tisher & Hennrich, Editorial: Abacus, Edición: 6a.
- 3. Organización y Arquitectura de Computadores, Autor: William Stallings, ditorial: Prentice Hall, Cuarta Edición.