

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

PROGRAMA DEL CURSO DE ORGANIZACIÓN COMPUTACIONAL

CODIGO:	964	CREDITOS:	4
ESCUELA:	Ciencias y Sistemas	AREA:	Ciencias de la Computación
PRERREQUISITO:	152, 771, 962	POSTREQUISITO:	778
CATEGORIA:	Obligatorio	SECCIÓN	A
HORAS POR SEMANA CURSO:	4	HORAS POR SEMANA DE LABORATORIO:	2
DIAS POR SEMANA CURSO:	Martes y Jueves	DIAS DE LABORATORIO:	Martes
HORARIO DEL CURSO:	9:10 – 10:50	HORARIO DEL LABORATORIO:	12:30 – 14:10

DESCRIPCION DEL CURSO:

Llevar a la práctica los conocimientos aprendidos en clase en lo que respecta a la lógica combinacional y secuencial de la electrónica digital, para que puedan lograr comprender la estructura interna de las computadoras, desde el punto de vista más básico, que permiten realizar tareas sencillas que sumándolas una a una realizan procesos complejos como los que actualmente conocemos.

OBJETIVOS GENERALES:

Proporcionar al estudiante los conocimientos y prácticas necesarias acerca de las técnicas de diseño y resolución de problemas de tipo digital o combinacional, para desarrollar habilidades que corresponden al rol de una persona capaz de solucionar problemas de ámbito electrónico digital.

OBJETIVOS ESPECIFICOS:

Conocimientos:

- 1. Conceptos básicos de la electrónica digital.
- 2. Aplicación de la lógica combinacional para la solución de problemas específicos.
- 3. Organización y arquitectura de unidades centrales de procesos.

METODOLOGÍA:

Para el curso se programaran clases presenciales con contenido audiovisual, lecturas, tareas, exámenes cortos, y prácticas para hacer en el horario del curso y en casa.

EVALUACIÓN DEL RENDIMIENTO ACADÉMICO:				
Procedimiento	Instrumento de Evaluación	Ponderación		
Examenes parciales		39pts		
Tareas y cortos		06pts		
Laboratorio		30pts		
Total de la zona		75pts		
Evaluación final		25pts		
Nota de Promoción		100pts		

CONTENIDO PROGRAMÁTICO:

Unidad I: Lógica combinacional

- Lógica binaria
- Compuertas lógicas básicas
- Álgebra de boole
- Funciones de boole
- Relaciones interpretativas del álgebra de boole y las compuertas lógicas
- Formas canónicas y normalizadas de las funciones de boole
- Modelos de simplificación de las funciones de boole
- Procedimiento de diseño con lógica combinacional
- Circuitos digitales en lógica combinacional con mediana y baja escala de integración, (conceptos de integración, bloques aplicativos, sumadores en cascada, restadores en cascada, mux, demux, decoder, encoder, memorias ROM)

Unidad II: Lógica secuencial síncrona

- Conceptos de retroalimentación
- Los Flip-flops (tipos, base de tiempo, etc)
- Diagramas de estado (redes Mealy y Moore)
- Métodos de simplificación de los diagramas de estado.
- Procedimiento de diseño
- Circuitos digitales secuenciales de mediana y baja integración (registros, memorias RAM, contadores digitales)

Unidad III: Lógica de operaciones entre registros

- Microoperaciones
- Macrooperaciones
- Organización y arquitectura de un sistema de procesamiento simple
- Diseño de un sistema de procesamiento simple
- Organización y arquitectura de un CPU básico

BIBLIOGRAFIA

Lógica digital y diseño de computadores. M. Morris Mano, Prentice Hall.

Bibliografía Complementaria

Mandado, E.: "Sistemas Electrónicos Digitales". Marcombo Boixareu Editores, Última edición.

Thomas C. Bartee: "Fundamentos de Computadoras Digitales". Mc. Graw Hill, quinta edición (Primera en castellano)

Tocci R. J.: "Sistemas Digitales, Principios y Aplicaciones". Prentice Hall, tercera edición.

Tanenbaum, A. S.: "Organización de Computadoras, un enfoque estructurado". Prentice Hall Hispanoamericana S. A., 1992