

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

PROGRAMA DEL CURSO DE ORGANIZACIÓN COMPUTACIONAL

CODIGO:	0964	CREDITOS:	3
			Ciencias de
	Ciencias y		la
ESCUELA:	Sistemas	AREA:	Computación
	152		
	771		
PRERREQUISITO:	962	POSTREQUISITO:	778
	Ing. Otto Rene		Cristian
CATEDRATICO:	Escobar Leiva	AUXILIAR:	Meoño
			Josué Zea
CATEGORIA:	Obligatorio	SECCION:	Α
HORAS POR SEMANA DEL		HORAS POR SEMANA DE	
CURSO:	4	LABORATORIO:	2
DIAS QUE SE IMPARTE EL	Martes y		
CURSO:	jueves	DIAS DE LABORATORIO:	Viernes
	9:00 -10:40	HORARIO DE	15:20 -19:00
HORARIO DEL CURSO:		LABORATORIO:	

DESCRIPCIÓN DEL CURSO

Llevar a la práctica los conocimientos aprendidos en clase en lo que respecta a la lógica combinacional y secuencial de la electrónica digital, para que puedan lograr comprender la estructura interna de las computadoras, desde el punto de vista más básico, que permiten realizar tareas sencillas que sumándolas una a una realizan procesos complejos como los que actualmente conocemos.

OBJETIVOS GENERALES

Proporcionar al estudiante los conocimientos y prácticas necesarias acerca de las técnicas de diseño y resolución de problemas de tipo digital o combinacional, para desarrollar habilidades que corresponden al rol de una persona capaz de solucionar problemas de ámbito electrónico digital.

Objetivos Específicos:

Conocimientos

- 1. Conceptos básicos de la electrónica digital.
- 2. Aplicación de la lógica combinacional para la solución de problemas específicos.
- 3. Organización y arquitectura de unidades centrales de procesos.

METODOLOGÍA

• Para el curso se programarán virtuales, lecturas, tareas, exámenes cortos, y prácticas para hacer en el horario del curso y en casa.

CONTENIDO PROGRAMÁTICO

- 1. Unidad I: Lógica combinacional
- Bases numéricas
- Lógica binaria
- Compuertas lógicas
- Métodos de agrupación
- Álgebra de Boole
- Métodos de simplificación
- Códigos binarios y Complemento en base r & r-1 (tarea de investigación)
- Diseño de lógica combinacional
- Bloques digitales combinacionales de mediana escala de integración

Esta unidad comprende los capítulos 1,2,3,4,5 del libro de texto Misma que es evaluada a través del **Examen Parcial No. 1**

2. Unidad II: Lógica secuencial

- El Feeback digital y su importancia en el advenimiento de la electrónica digital secuencial
- El Flip-Flop
- Tipos de Flip-Flop's
- Diagramas de tiempo
- Diagramas de Estado
- Diseño con lógica secuencial
- Bloques digitales secuenciales de mediana y alta escala de integración
- Familias lógicas (Tarea de investigación)

Esta unidad comprende los capítulos 6 y 7 del libro de texto Misma que es evaluada a través del **Examen Parcial No.** 2

3. Unidad III: Lógica secuencial

- Importancia y concepto de la lógica de transferencia entre registros (L.T.R.)
- Micro operaciones
- Macro operaciones
- Herramientas utilizadas en L.T.R.
- Diseño con L.T.R.
- Concepto básico del CPU en tecnología Von Neumann

Esta unidad comprende el capítulo 8 del libro de texto Misma que es evaluada a través del **Examen Parcial No.3**

BIBLIOGRAFIA

Lógica digital y diseño de computadores. M. Morris Mano. Editorial Mc Graw Hill, primera edición.

Bibliografía Complementaria

"Diseño Digital". Taub & Schilling Editorial Hispano-europea, primera edición.

Ponderación del curso

3 exámenes parciales de 14 puntos c/u
Hojas de Trabajo y tareas
Laboratorio
42 puntos
07 puntos
26 puntos

TOTAL DE ZONA 75 puntos

• Examen final 25 puntos

NOTA FINAL 100 puntos