S

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

Nombre del Curso: Análisis y Diseño de Sistemas II							
Código:	785	Créditos:	<mark>5</mark>				
Escuela:	CIENCIAS Y SISTEMAS	Área a la que pertenece:	Software				
Pre requisito:	283-Análisis y Diseño de Sistemas 1	Post requisito:	780-Software avanzado				
Categoría:	Obligatorio	Semestre:	2do. Semestre 2024				
Docente:	MBA. MSc. Ing. Claudia Rojas de Morán 2346363510101@ingenieria.usac.edu.gt	Auxiliar:	Brandon Noj				
Edificio:	-	Sección:	A				
Salón del curso:	meet	Salón de laboratorio:	meet				
Horas por semana del curso:	4	Horas por semana del laboratorio:	2				
Días que se imparte el curso:	Lunes y Martes	Días que se imparte el laboratorio	Sábado				
Horario del curso:	07:10 - 08:50	Horario del laboratorio:	16:30 – 18:10				

1. Descripción del curso

El curso está diseñado para que el estudiante identifique y aplique los patrones aplicables para el diseño de componentes de una aplicación, es decir patrones de diseño. El uso de dichos patrones, de patrones de arquitectura, técnicas para definir una arquitectura que satisfaga los requerimientos funcionales y no funcionales, comprenden el resto del curso. Se aplicarán los elementos anteriores en un proyecto de curso para poder contar con una experiencia real en el uso de los patrones y técnicas presentados.

2. Objetivos

General Específicos

Aplicar procesos en el diseño del software, de manera que los mismos consideren los diferentes tipos de requerimientos que pueden impactar en la definición de la estructura de un sistema de software.

- 1. Identificar y describir los conceptos de arquitectura de software para el desarrollo de sistemas informáticos.
- 2. Identificar y describir los conceptos de atributos de calidad y tácticas aplicables para alcanzarlos.
- Evaluar y adaptar el diseño de un sistema de software de acuerdo con los diferentes tipos de requerimientos de un proyecto.
- **4.** Aplicará técnicas para medición cuantificable del rendimiento y escalabilidad de una aplicación

3. Metodología

- 1) El curso se impartirá a través de clases magistrales **virtuales** dos días por semana, con duración de dos periodos cada día.
- 2) El laboratorio se impartirá de manera virtual una vez por semana, con duración de dos períodos cada día.
- 3) Durante el semestre, se asignará un proyecto dividido en tres fases a realizarse en grupos; así como tareas, ejercicios y pruebas cortas.
- 4) Se desarrollarán investigaciones y exposiciones de conferencias recientes relacionadas con el curso.

4. Observaciones

- 1. Es obligatorio acumular el 90% de asistencia antes de cada parcial (de lo contrario no se tendrá derecho a examen).
- 2. El laboratorio se calificará sobre 100, y será equivalente a 34 puntos de zona.
- 3. Habrá 1 proyecto dividido en tres fases que se realizará en grupo.
- 4. El catedrático revisará las notas obtenidas en el curso y el laboratorio. Podrá decidir sí es necesaria una segunda revisión a cada proyecto y considerar nuevamente la ponderación obtenida en cada proyecto.
- 5. Las notas de cada proyecto serán publicadas por el catedrático del curso en el transcurso del semestre, el estudiante tendrá 8 días como máximo para pedir revisión de proyecto.
- 6. El laboratorio debe aprobarse con 61 puntos sobre 100.
- 7. Es obligatorio ganar el laboratorio para tener derecho a evaluación final del curso.
- 8. No habrá proyecto de retrasada, ni reposición de nota de laboratorio. Al final del semestre, no se asignarán trabajos extra para recuperar puntos de zona.
- 9. El curso se aprueba con 61 puntos.
- 10. Las entregas fuera de fecha no son aceptadas.
- 11. Debe existir respeto por las opiniones de los demás.
- 12. Como estudiantes universitarios, se espera que sepan y entiendan las normas de educación, respeto, ética y plagio relacionadas con trabajos de otros autores y con el desarrollo del curso.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

4. Arquitectura y Negocios

5. Contenido temático del curso				
Unidad		Tema		
1. Principios de Diseño de Arquitectura de Software	1.	¿Qué es Arquitectura de Software? 1.1. Concepto 1.2. ¿Por qué es importante? 1.3. Beneficios de una Arquitectura de SW 1.4. Pasos para la definición de una Arquitectura 1.5. ¿Qué se tiene en cuenta para el diseño? 1.6. ¿Cómo se modela? 1.7. Estructuras y Vistas 1.4.1 Categorías de Estructuras 1.8. Generos y Estilos Arquitectónicos 1.8.1 Arquitectura Candidata 1.8.2 La Arquitectura de Referencia 1.8.3 Diseño Arquitectónico 1.8.4 Catálogo de Estilos 1.8.4.1 Cliente-Servidor 1.8.4.2 Centrada en Datos 1.8.4.3 En o por capas 1.8.4.4 Centrada en el flujo de datos 1.8.4.5 Llamada y retorno		
2. Calidad del Software	1. 2. 3. 4.	1.8.4.6 Basada en eventos 1.8.4.7 Modelo-Vista-Controlador Conceptos Generales ¿Por qué es importante? Normas ISO Atributos de Calidad 4.1. Funcionalidad 4.2. Fiabilidad 4.3. Usabilidad 4.4. Eficiencia 4.5. Mantenibilidad 4.6. Portabilidad		
3. Arquitectura en el Ciclo de Vida	1. 2. 3.	 4.7. Otros atributos de calidad no observables via ejecución Arquitectura y Requerimientos Arquitectura en las Metologías Ágiles (SCRUM) Diseño Arquitectónico 3.1. Estrategia 3.2. Estructuras 3.3. Patrones y Estilos Arquitectónicos Documentando la Arquitecturas de Software 		
A Avenite store of New Sign	1	Autientiques con cons		

1. Aplicaciones con casos

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

6. Evaluación del rendimiento académico

Según el Reglamento General de Evaluación y Promoción del Estudiante de la Universidad de San Carlos de Guatemala, la zona tiene valor de 75 puntos, la nota mínima de promoción es de 61 puntos y la zona mínima para optar a examen final es de 36 puntos.

Procedimiento de evaluación	Ponderación	
	Tareas y/o cortos	04 pts.
Clase	Exposición	05 pts.
	Primer parcial	15 pts.
	Segundo parcial	17 pts.
Total de clase		41 pts.
	Proyecto Fase I	10 pts.
Laboratorio	Proyecto Fase II	10 pts.
	Proyecto Fase III	10 pts.
	Prácticas	4 pts.
Total de laboratorio		34 pts.
Zona	75 pts.	
Examen Final	25 pts.	
Nota de promoción	100 pts.	

7. Cronograma de actividades	
Tema principal	Fecha
Principios de Diseño de Software	15 de julio al 20 de agosto
Calidad del Software	26 de agosto al 10 de septiembre
Primer parcial.	17 de septiembre
Arquitectura en el ciclo de vida	30 de septiembre al 14 de octubre
Semana de congresos estudiantiles	23 al 28 de septiembre
Arquitectura y Negocios	15 al 28 de octubre
Segundo Parcial.	29 de octubre

2

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

8. Bibliografía

- Essential software architecture, Ian Gorton
- Just enough software architecture, George Fairbanks
- Head first design patterns, Elisabeth Freeman, Eric Freeman, Bert Bates, Kathy Sierra
- Software systems architecture, working with stakeholders using viewpoints and perspectives, Nick Rozanski, Eoin Woods
- Software performance and scalability: a quantitative approach, Henry H. Liu
- Software Architecture Patterns. Second Edition. Mark Richards
- Software Quality Engineering, Jeff Tian
- Software Arquitecture in Practice. Len Bass, Paul Clements, Rick Kazman

9. Normas para la clase virtual

- Todas las Comunicaciones con el profesor y los auxiliares deben ser por los correos electrónicos y grupos de comunicación que se indiquen en clase.
- En toda comunicación escrita se debe mostrar respeto y no utilizar mensajes en mayúsculas.
- Las comunicaciones enviadas por correo electrónico serán atendidas en un máximo de 3 días hábiles.
- Durante los exámenes los estudiantes deben mantener encendida su cámara y estar conectados a la sesión de Google Meet durante todo el tiempo de evaluación.
- Durante las clases los estudiantes deben encender su cámara siempre que el profesor o el auxiliar les hagan una pregunta directa, o bien, cuando el estudiante realice alguna consulta.
- Durante las clases los estudiantes pueden hacer consultas por el chat del curso o por la opción de Questions / Answers, según lo indique el profesor, teniendo el cuidado de ser respetuoso y mantener las reglas de cortesía durante la escritura.