
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA
FACULTAD DE INGENIERIA

ESCUELA DE CIENCIAS Y SISTEMAS

PROGRAMA DEL CURSO
.
NOMBRE DEL CURSO: INTRODUCCION A LA PROGRAMACION DE COMPUTADORES I - 0770

CODIGO: 0770 CREDITOS: 4
ESCUELA: CIENCIAS Y SISTEMAS AREA A LA QUE PERTENECE: DESARROLLO DE SOFTWARE

PRE REQUISITO:

0768

INTRODUCCION A LOS

ALGORITMOS Y FLUJOS DE

DATOS

POST REQUISITO:
0771 INTRODUCCIÓN A

LA PROGRAMACIÓN Y

COMPUTACIÓN 2

CATEGORIA: OBLIGATORIO VIGENCIA: PRIMER SEMESTRE 2026
CATEDRÁTICO (A): VER ANEXO AUXILIAR: STAFF
EDIFICIO: A DEFINIR SECCIÓN: A, B, C, D, E, F
SALÓN DEL CURSO: A DEFINIR SALON DEL LABORATORIO: PENDIENTE
HORAS POR SEMANA DEL

CURSO: 4 HORAS POR SEMANA DEL

LABORATORIO: 2

DÍAS QUE SE IMPARTE EL

CURSO: DESCRITO EN INCISO 13 DIAS QUE SE IMPARTE EL

LABORATORIO: PENDIENTE

HORARIO DEL CURSO: DESCRITO EN INCISO 13 HORARIO DEL LABORATORIO: PENDIENTE

2.DESCRIPCIÓN DEL CURSO

El curso constituye la base primaria de programación del estudiante de la carrera de sistemas, a

través del conocimiento de lenguajes, sus elementos base, el ciclo de desarrollo clásico del software;

estructuras básicas para programar, manejo de memoria estática y dinámica, así como conceptos

iniciales sobre lo que es la calidad y seguridad en el software. Dejando finalmente un punto inicial

introductorio de lo que es la computación en la nube.

3. VINCULACIÓN DE COMPETENCIAS DEL PERFIL DE EGRESO

1.
Demuestra pensamiento crítico, actitud investigativa y rigor analítico en el planteamiento y la

resolución de problemas complejos.

2.

Interpreta, analiza y aplica conceptos y procedimientos para la solución de problemas de

ingeniería y ciencias afines por medio de actividades de aprendizaje asignadas.

3.

Utiliza software actualizado como herramienta para modelar y resolver problemas de ingeniería

y ciencias afines, a través de conocimientos y habilidades adquiridas en los cursos con la

tecnología disponible.

4.

Planifica y desarrolla actividades de auto aprendizaje para la solución de problemas por medio

de la implementación de trabajos extra aula realizados de manera individual y/o grupal

colaborativo.

5.

Razona crítica y lógicamente sobre los procesos y resultados para verificar su validez por medio

de la comparación con el conocimiento y la experiencia

6.

Utiliza e interpreta el lenguaje natural y seudocódigo para la correcta comunicación y desarrollo

de conocimiento científico, por medio de la redacción y lectura de publicaciones a nivel

nacional e internacional.

7.

Fortalece sus habilidades de trabajo individual y en equipo multidisciplinario para su buen

desempeño profesional por medio de las actividades asignadas.

4. Unidad de Aprendizaje No 1: FUNDAMENTOS DE PROGRAMACION

 Periodos: 02

Problema:

Que el estudiante comprenda que es un lenguaje de programación, tipos vigentes en el mercado, su

estructura interna, las interfaces graficas donde corre; así como los elementos que lo constituyen y como

estos permiten el trabajar con la memoria estática y dinámica, así como inspección de código.

Competencias

de la unidad

• Identifica y analiza los fundamentos de un lenguaje de programación.

• Conoce los elementos que conforman a un lenguaje de programación vigente.

• Administra estructuras estáticas de memoria.

• Ejecuta la inspección de código para garantizar el correcto funcionamiento de este.

Criterios de desempeño

Saber hacer Saber conocer Saber ser

Describe los fundamentos de un

lenguaje

Distingue paradigmas y los tipos

de lenguajes de programación

vigentes en el mercado.

Identifica los elementos base de

un lenguaje que son necesarios

para el desarrollo de software.

Reconoce la forma de

implementar memoria estática y

las estructuras asociadas a esta.

Reconoce las estructuras

dinámicas e implementación de

esta en memoria.

Inspecciona el código de

diferentes formas para garantizar

el funcionamiento del mismo, así

como la inspección de errores en

la ejecución.

Conoce que es un lenguaje; como se

compone cuales son vigentes en el

mercado.

Diferencia la aplicación y uso de los

diferentes paradigmas de

programación.

Identifica e implementa los

elementos base en el lenguaje

nativo designado en el curso.

Diferencia e implementa estructuras

estáticas o dinámicas según las

necesidades en el desarrollo del

software.

Administra eficientemente la reserva

de memoria del computador usando

y colocando únicamente la

estructura de datos necesarias para

su código.

Conoce como inspeccionar un

código de forma eficiente

identificando errores y mejoras en

su ejecución.

Adquiere la habilidad de diferenciar

los paradigmas y ventajas y

desventajas que ofrecen según las

necesidades.

Resuelve una construcción de

código implementando los

elementos de cualquier lenguaje

aprovechando para satisfacer las

necesidades de negocio.

Hace uso eficiente de la memoria en

el desarrollo de una solución de

negocio; en el lenguaje

seleccionado; contribuyendo a un

buen rendimiento de su

construcción.

Debugea errores en un código

propio o ajeno; identifica mejoras en

las construcciones y flujo lógicos en

el código fuente de una solución.

Provee soluciones fuertes en código

a través de reducción de errores con

una inspección del flujo de su

código.

4.1 Evidencia de aprendizaje

• Tarea: Solución de ejercicios seleccionados del libro de texto de la Unidad 1, para trabajar

individualmente en su casa.

4.2 Instrumento de Evaluación

Rúbricas de calificación de tareas (ver apartado de rúbricas al final del documento)

|

5. Unidad de Aprendizaje No 2: MEMORIA DINAMICA

 Periodos: 03

Problema:

Entender la organización de la memoria y su administración dinámica dentro del ordenador. Su aplicación en

soluciones de software y como las estructuras básicas diferenciadas permiten interactuar y almacenar

información relevante en la ejecución de un programa.

Competencias

de la unidad

• Identifica y analiza la estructura de memoria RAM, segmentación de esta y fines de

cada uno de estos para almacenar diferentes tipos de datos.

• Conce y construye punteros en nodos; aplicados a diferentes estructuras dinámicas de

memoria que almacenan datos con diversas implementaciones eficientes para el

manejo de datos.

• Administra y proyecta el consumo de bytes en memoria RAM; planifica dentro de su

programación el uso y liberación de memoria bajo demanda(memory allocation); así

como uso del garbage collector.

Criterios de desempeño

Saber hacer Saber conocer Saber ser

Identifica que es la memoria

dentro del ordenador y el papel

que esta cumple en el manejo y

traslado de información.

Distingue los segmentos de

memoria y donde se alojan los

diferentes tipos de datos en la

memoria.

Identifica los elementos de un

nodo y como estos deben ser

asociados entre otros nodos

como una construcción base.

Reconoce estructuras dinámicas

simples como listas y todas sus

variaciones, pilas y colas.

Reconoce otros tipos de

estructuras como tablas de hash

y arboles a un alto nivel sin

mayor detalle como alternativas

avanzadas de administración de

la memoria.

Identifica la cantidad de bytes a

usar dentro de su codificación

como base para la construcción

de las estructuras dinámicas de

su solución.

Sabe la importancia y el valor de la

memoria en el ordenador, por que

debe ser administrada

correctamente

Descompone como la memoria está

estructurada e identifica que tipo

de información es colocada en cada

uno de los segmentos.

Conoce los elementos y tipo de

información que un nodo debe

contener y como estos se conectan

con otros.

Identifica con facilidad las

estructuras dinámicas vigentes y

cuales son los casos de

implementación

Conoce estructuras dinámicas

complejas a un alto nivel y los

casos de implementación

Cuantifica la cantidad de bytes

iniciales de las estructuras y

variables creadas en su código

fuente y el consumo inicial que esta

pueda tener al reservar memoria.

Adquiere la habilidad para crear

únicamente las estructuras

estáticas y dinámicas necesarias en

memoria.

Administra variables y objetos que

son colocados en memoria

proyectando los bytes iniciales en el

segmento de datos(DS).

Desarrolla un TDA implementando

diferentes conexiones entre nodos y

comprende la lógica de conexión.

Adquiere la habilidad para

implementar en un lenguaje una

estructura dinámica

Reconoce para que tipo de casos,

una estructura dinámica compleja

puede ser usada.

Proyecta el consumo de bytes de

las estructuras y variables creadas

en su código y cual es su peso en el

ordenador donde el código se

ejecuta; así como evaluar

oportunidades para optimizar el

consumo de memoria RAM.

5.1 Evidencia de aprendizaje

• Tarea: Solución de ejercicios seleccionados Unidad 2, para trabajar individualmente en su casa.

5.2 Instrumento de Evaluación

Rúbricas de calificación de tareas (ver apartado de rúbricas al final del documento)

6. Unidad de Aprendizaje No 3: PROGRAMACION ORIENTADA A OBJETOS

 Periodos: 02

Problema:

Comprender la programación orientada a objetos como parte del paradigma imperativo, de programación

identificando los principios y como estos se concretan al programar, así como los procesos que permiten

desarrollar una solución usando este tipo de programación.

Competencias

de la unidad

• Identificar los principios de POO; y lo diferencia del resto de paradigmas o tipos de

lenguaje.

• Desde la abstracción hasta la diagramación de las clases el estudiante reconoce todo

el proceso ordenado para la construcción del software.

• Utiliza herramientas CAD/RAD para apoyarse en el proceso de construcción de SW

usando POO.

• Implementa soluciones entendiendo casos reales planteados para una construcción

del software de forma en que todo lo organiza entorno a objetos existentes del lenguaje

y otros creados por el estudiante.

Criterios de desempeño

Saber hacer Saber conocer Saber ser

Conoce y comprende cada uno

de los principios de POO a nivel

conceptual para posteriormente

ser implementados.

Distingue el proceso de POO

desde la abstracción de objetos

de una realidad hasta la creación

del Diagrama de Clases.

Identifica que previo al desarrollo

debe existir un diseño (Blue Print)

de este provisto para un lenguaje

de POO a través el Diagrama de

Clases.

Conoce e identifica los objetos

del lenguaje POO usado, así

como construir nuevos objetos

para su desarrollo.

Identifica herramientas CAD/RAD

para el diseño de clases y su fácil

exportación de las clases y

conexiones a un lenguaje fuente

a elección.

Sabe el paso a paso de cada uno

de los principios de POO y como

estos se construyen en modelado

hasta el desarrollo nativo del

lenguaje

Reconoce en la abstracción como

el paso más importante para la

construcción de clases en el mapeo

de una realidad de negocio.

Identifica claramente que el diseño

de software tiene como

componente principal la

construcción y unión de clases.

Conoce como se construye una

clase; su nombre, atributos y

métodos principales (constructor,

destructor y getters y setters.

Determina como se da vida o se

instancia un objeto a través de

forma única o combinado con otras

estructuras previamente conocidas.

Identifica herramientas CAD

vigentes del mercado así como

ventajas y desventajas asociadas.

Implementa nativamente en el

lenguaje de desarrollo los principios

de POO claramente enlazándolos

todos en el producto final que es el

Diagrama de Clases.

Realiza los procesos de abstracción

necesarios para mapear la realidad

sus objetos e información clave

sobre un realidad o problema de

negocio dado.

Identifica clases físicas/lógicas que

lo llevan a la construcción de las

mismas y unión respectiva.

Crea clases con todos sus atributos

y métodos necesarios; así como los

tipos de conexiones, y multiplicidad

de las mismas.

Implementa la instancia de clases

de forma simple o compuesta con

las estructuras de datos

previamente conocidas (estáticas o

dinámicas de memoria).

Construye código en un lenguaje

POO usando como base una

herramienta CAD/RAD vigente para

eficientizar el desarrollo.

6.1 Evidencia de aprendizaje

• Tarea: Solución de ejercicios seleccionados Unidad 3, para trabajar individualmente en su casa.

6.2 Instrumento de Evaluación

Rúbricas de calificación de tareas (ver apartado de rúbricas al final del documento)

7. Unidad de Aprendizaje No 4: TESTING, SECURITY & QUALITY ASSURANCE I

 Periodos: 04

Problema:

Reconocer e implementar procesos de construcción de calidad y seguridad del software para incluir

estándares básicos del mercado vigentes.

Competencias

de la unidad

• Reconoce los principios básicos de cómo realizar pruebas en el software, para

garantizar la calidad de un proyecto de software.

• Identifica los aspectos principales estándares de seguridad vigentes de software,

reduciendo el riesgo de afectación de una solución.

• Razona y establece prioridades generales que garanticen la elaboración del software

con calidad, esto evitando afectaciones en la información y el software.

Criterios de desempeño

Saber hacer Saber conocer Saber ser

Determina que es una prueba de

software, tipos y como es llevada

a cabo de inicio a fin y sobre qué

ambiente.

Distingue como la prueba se

asocia con los requerimientos

funcionales y no funcionales del

software.

Desglosa los roles de prueba

(Dev, QA y UAT), los ambientes y

que tipos de prueba se realizan a

lo largo de la vida del software.

Reconoce estándares de calidad

y seguridad vigentes en el

mercado y como estos

contribuyen al desarrollo.

Se apoya de IAs orientadas al

desarrollo de SW para validar y

mejorar su código fuente con

estándares de seguridad y

calidad vigentes.

Identifica los tipos de pruebas

alcances y como deben ser

aplicadas para garantizar la

funcionalidad del software.

Sabe como implementar pruebas

sobre la funcionalidad del software

y aspectos no funcionales del

mismo.

Sabe cómo los roles de prueba del

software impactan para garantizar

el funcionamiento de este.

Identifica estándares de QA y SA

aplicables en los detalles

relacionados con los elementos de

desarrollo aprendidos incluyendo

este curso conocido.

Establece que estándares son los

más usados en el mercado y cuales

puede implementar asistidos por IA

para la mejora de su código fuente;

identificando los puntos de mejora.

Adquiere la habilidad de probar el

software de formas distintas en

diferentes etapas para garantizar el

funcionamiento del mismo.

Resuelve a través de un plan de

pruebas, casos y escenarios

garantizar que todos los

requerimientos de negocio, así

como técnicos funcionan

correctamente.

Adquiere la habilidad para

coordinar pruebas en diferentes

etapas, así como la construcción de

los casos de pruebas para los

diferentes roles de negocio.

Entiende que los estándares de QA

y SA continuamente se renuevan

por vulnerabilidades o mejoras

continuas y que es clave conocerlos

para desarrollar software de calidad

y seguro.

Se apoya de la IA para validar la

seguridad y calidad de su código

fuente aplicando QA y SA vigente

entendiendo lo que ha aplicado.

7.1 Evidencia de aprendizaje

• Tarea: Solución de ejercicios seleccionados Unidad 4, para trabajar individualmente en su casa

7.2 Instrumento de Evaluación

Rúbricas de calificación de tareas (ver apartado de rúbricas al final del documento)

10. Evaluación de Curso

Unidad de

aprendizaje
Evidencia de aprendizaje Instrumento evaluación Fecha Valoración

Unidad 1
Actividades, Investigaciones y

Tareas de unidad

Tareas, Investigaciones y hojas

de trabajo.
 1.25 pts.

Unidad 1 Evaluación de rendimiento Primer Examen Parcial

12 pts.

Unidad 2
Actividades, Investigaciones y

Tareas de unidad

Tareas, Investigaciones y hojas

de trabajo.
 1.25 pts.

Unidad 2 Evaluación de rendimiento Segundo Examen Parcial 13 pts.

Unidad 3
Actividades, Investigaciones y

Tareas de unidad

Tareas, Investigaciones y hojas

de trabajo.
 1.25 pts.

Unidad 3 Evaluación de rendimiento Tercer Examen Parcial 15 pts.

Unidad 4
Actividades, Investigaciones y

Tareas de unidad

Tareas, Investigaciones y hojas

de trabajo.
 1.25 pts.

Unidad 4 Evaluación de rendimiento Examen Final de Curso. 25pts.

 11. Texto y referencias

• DEITEL, D. &.D (2008). Cómo Programar en Java (7ma Edición). Mexico: Prentice Hall.

• FREEMAN, E., ROBSON, E., & BATES, B. Y. (2009). Head First Design Patterns. USA: O’Reilly.

• JOYANES, L. (1995). Programación en Turbo Pascal Versiones 5.5, 6.0, y 7.0. Interamericana de España:

McGraw-Hill Mexico.

• JOYANES, L. y. (2002). Programación en Java 2 (algoritmos, estructura de datos y programación orientada a

objetos). España: McGraw-Hill / Interamericana de España, S. A. .

• MCLAUGHLIN, B., & POLLICE, G. Y. (2006). Head First Object-Oriented Analysis & Design. USA: O’Reilly

Media.

12. Clausulas restrictivas

El perfil del estudiante de la facultad de Ingeniería de la Universidad de San Carlos de Guatemala exige una alta

calidad en la excelencia académica y ética profesional. Se establecen en este curso los siguientes lineamientos

que regulan el comportamiento del estudiante:

• Copias en exámenes, cortos, proyectos, tareas e investigaciones tienen cero de nota.

• Exámenes parciales y examen final NO tienen reposición.

• No hay prorrogas.

• No hay reposición de proyectos.

• Cualquier proyecto, tarea o investigación que se entregue después de la fecha calendarizada tiene 30

puntos menos, cada día de atraso.

• Los exámenes resueltos a lápiz no tienen derecho a revisión.

• Es obligatorio ganar el laboratorio para tener derecho a evaluación total del curso.

• 80% mínimo de asistencia.

• El curso se gana con 61 pts. de 100. El laboratorio de gana con 61 pts. de 100.

13. Dist.de clases
Introducción a la programación de Computadores I A S 07:10 - 10:30 Ing. Marlon Orellana

Introducción a la programación de Computadores I B M-J 07:10 - 08:50 Ing. William Argueta

Introducción a la programación de Computadores I C M-J 07:10 - 08:50 Ing. Moises Velasquez

Introducción a la programación de Computadores I D M-J 07:10 - 08:50 Ing. Herman Veliz

Introducción a la programación de Computadores I E M-J 07:10 - 08:50 Ing. Neftali Calderon

Introducción a la programación de Computadores I F L-M 11:30 - 13:10 Ing. William Escobar

