UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

Nombre del curso: Laboratorio Arquitectura de Computadores y Ensambladores 1						
Prerrequisito:	0796 - Lenguajes formales y de programación 0964 — Organización Computación	Post requisito:	0281 - Sistemas Operativos 1 0779 - Arquitectura de Computadores y Ensambladores 2 0970 – Redes de Computadoras 1			
Categoría:	Obligatorio	Semestre:	2do. Semestre 2023			
Docente:	Ing. Otto Rene Escobar Leiva	Auxiliar: Carlos Antonio Velasquez Castellanos				
Edificio:	Meet	Sección:	В			
Salón del curso:	Meet	Salón de laboratorio:	Meet			
Horas por semana del curso:	4	Horas por semana del laboratorio:	2			
Días que se imparte el curso:	Jueves – sábado	Días que se imparte el laboratorio	Viernes			
Horario del curso:	17:20 – 19:00 y 8:50 – 10:30	Horario del laboratorio:	15:40 – 17:20			

1. Descripción del curso

El laboratorio del curso de Arquitectura de Computadoras y Ensambladores 1, trata sobre la parte práctica del curso. Se encarga de la aplicación de electrónica digital haciendo uso de Microcontroladores. Refuerza los conocimientos de electrónica digital y secuencial. Además de entender el funcionamiento de programas a bajo nivel, y manipular el uso de la memoria en los programas informáticos.

2. Objetivos

- 1. Que el estudiante sea capaz de desarrollar aplicaciones con entradas y salidas, tanto digitales como análogas haciendo uso de microcontroladores.
- 2. Poner en práctica los conocimientos de operaciones aritméticas básicas a bajo nivel.
- 3. Comprender el uso de la memoria de video en los computadores.
- **4.** Que el estudiante conozca el impacto del Lenguaje Ensamblador en las Ciencias de la Computación.

3. Metodología

- 1. Clases magistrales para guiar y asesorar al estudiante fortaleciendo el conocimiento de los diferentes Microcontroladores.
- 2. Autoaprendizaje y lectura acerca de las herramientas a utilizar.
- 3. Exámenes cortos, tareas, prácticas y proyecto.
- 4. Se realizarán prácticas y proyectos para poder evaluar los conceptos adquiridos en clase sobre la arquitectura de computadoras.

4. Habilidades

- 1. Conocimiento de programación del lenguaje utilizado por los microcontroladores.
- 2. Conocer las funciones básicas de salida serial.
- 3. Comprensión de la importancia y aplicación del código intermedio en la construcción de software.
- 4. Comprensión de los requerimientos que se les planteen en los enunciados a lo largo del curso

5.Competencias

- 1. Interpretar parámetros utilizados en robótica.
- 2. Comprender el uso de motores.

6.Observaciones

- 1. La calificación de los proyectos de laboratorio es personal acoplándose al día y horario que se indique previamente.
- Las copias parciales o totales de los proyectos o prácticas tendrán una nota de 0 puntos y los responsables serán reportados a la Escuela de Ingeniería en Ciencias y Sistemas.
- 3. Se debe de mandar los archivos entregables en fechas establecidas para tener derecho a calificación.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

5. Contenido temático del curso							
Unidad	Tema						
	1.1. Introducción al curso y repaso.						
	1.2.1.Reseña histórica						
	1.2.2.Microarquitecturas						
Arquitectura del	1.2.3. Arquitectura Von Neumann						
computador	1.2.4. CISC vs RISC						
computation.	24.5 6						
	2.1. Definición de microcontroladores						
	2.1.1. Arduino 2.1.2. Software Arduino						
	2.1.2. Software Ardumo 2.1.3. Estructuras de control						
	2.1.4. Entradas y salidas de Arduino						
	2.1.5. Pantalla LCD						
	2.1.6. Protocolo I2C						
Microcontroladores	2.1.6.1. Librería Wire						
	2.1.6.2. Comunicación Maestro - Esclavo						
	2.2. Bluetooth						
	2.2.1. Historia						
	2.2.2. Módulo						
	3.1. Ensamblador						
	3.1.1. Historia						
	3.1.2. Mnemónico						
	3.2. Herramientas						
Lenguaje Ensamblador	3.2.1. MASM						
	3.2.2. DOS						
	3.2.3. DOS Box						
	3.3. Registros 3.3.1. Registros de uso general						
	3.3.2. Herramientas recomendadas						
	3.4. Instrucciones						
	3.4.1. Instrucciones de Movimiento						
	3.4.2. Instrucciones Aritméticas						
	3.4.3. Instrucciones Lógicas						
	3.4.4. Instrucciones de Bifurcación						
	3.4.5. Instrucciones de Control						
	3.4.6. Instrucciones de Software						
	3.5. Declaración de datos						
	3.5.1. La Pila						
	3.6. Funciones y procedimientos 3.6.1. Etiquetas						
	3.6.2. Procedimientos						
	3.6.3. Macros						
	3.7. Interrupciones						
	3.7.1. Rutinas auxiliares						
	3.8. Modo Video						
	3.8.1. VGA						
	3.8.2. Modos de video						
	3.9. Modos de Video						
	3.9.1. Mapeo Lexicográfico						
	3.9.2. Sistema Cartesiano						

6. Evaluación del rendimiento académico

El laboratorio tiene una ponderación de 26 puntos distribuidos de la siguiente manera.

Tema	Actividad	Inicio	Entrega	Ponderación
	Práctica 1	7 de agosto	14 de agosto	5
Arduino	Práctica 2	14 de agosto	28 de agosto	13
	Proyecto 1	28 de agosto	11 de septiembre	17
	Práctica 3	11 de septiembre	18 de septiembre	5
Ensamblador	Práctica 4	18 de septiembre	25 de septiembre	10
	Proyecto 2	23 de septiembre	23 de octubre	35
	Corto 1	2 de septiembre		2.5
Exámenes	Corto 2	28 de octubre		2.5
	Final	3 de noviembre		10
Total				100

8. Bibliografía

- Los microprocesadores INTEL Arquitectura programación e interfaz de los procesadores 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro y Pentium II, Barry Brey. Editorial: Prentice Hall, Séptima Edición.
- PC INTERNO, Autor: Tisher & Hennrich, Editorial: Abacus, Edición: 6a.
- Organización y Arquitectura de Computadores, Autor: William Stallings, editorial: Prentice Hall, Cuarta Edición

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS

9. Normas para la clase virtual

- Todas las Comunicaciones con el profesor y los auxiliares deben ser por los correos electrónicos que se indiquen en clase.
- En toda comunicación escrita se debe mostrar respeto y no utilizar mensajes en mayúsculas.
- Las comunicaciones enviadas por correo electrónico serán atendidas en un máximo de 3 días hábiles.
- Durante los exámenes los estudiantes deben mantener encendida su cámara y estar conectados a la sesión de Google Meet durante todo el tiempo de evaluación.
- Durante las clases los estudiantes deben encender su cámara siempre que el profesor o el auxiliar les hagan una pregunta directa, o bien, cuando el estudiante realice alguna consulta.
- Durante las clases los estudiantes pueden hacer consultas por el chat del curso o por la opción de Preguntas / Respuestas, según lo indique el profesor, teniendo el cuidado de ser respetuoso y mantener las reglas de cortesía durante la escritura.