Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Programa del Laboratorio

SISTEMAS OPERATIVOS 1 Segundo Semestre 2024

I. INFORMACIÓN GENERAL

Código: 281	Créditos: 5
Escuela: Ciencias y Sistemas	Área: Ciencias de la Computación
El curso tiene laboratorio: Si	Categoría: Obligatorio
Horas magistrales a la semana: 4	Horas de laboratorio a la semana: 2
Prerrequisitos: 778 – Arquitectura de Computadoras y Ensambladores 1 781 – Organización de Lenguajes y Compiladores 2	Postrequisitos: 285 — Sistemas Operativos 2 775 — Sistemas de Bases de Datos 2
CATEDRÁTICO: Ing. Jesús Alberto Guzmán Polanco	AUXILIARES: Alvaro Norberto García Meza Sergio Alfonso Ferrer García

II. DISTRIBUCIÓN DE SECCIONES

Sección	Edificio	Salón	De:	A:	Lu	Ma	Mi	Ju	Vi	Sa	Catedrático
Α	MEET	Virtual	07:10	08:50	Χ			Χ			Jesús Alberto Guzmán Polanco

Sección	Edificio	De:	A:	Lu	Ma	Mi	Ju	Vi	Sa	Auxiliares
Α	MEET	17:20	19:00	Х						ALVARO NORBERTO GARCÍA MEZA
Α	MEET	17:20	19:00	Χ						SERGIO ALFONSO FERRER GARCÍA

III. DESCRIPCIÓN DEL CURSO

El curso de Sistemas Operativos 1 se enfoca en el estudio de los sistemas operativos, cómo funcionan, su administración y cómo son utilizados en la Nube. Los estudiantes aprenderán sobre los conceptos fundamentales de los sistemas operativos, como la gestión de procesos, la gestión de memoria y el almacenamiento de archivos. El curso también abordará temas sobre conceptos de contenedores, Kubernetes y desplegando aplicaciones en las principales nubles públicas (AWS, GCP y Azure). Los estudiantes tendrán la oportunidad de aplicar lo que han aprendido a través de proyectos y tareas prácticas.

IV. COMPETENCIA GENERAL DEL CURSO

Que el estudiante desarrolle, comprenda los conceptos fundamentales de un sistema operativo, incluyendo su arquitectura, diseño y administración con un especial énfasis en Linux y sus distintas aplicaciones en la nube y contenedores.

V. METODOLOGÍA

- Método: deductivo
- Técnicas: expositiva y demostrativa
- Instrumentos: guías de trabajo, hojas de trabajo, ejercicios, preguntas, diálogo y observación
- Las clases magistrales se impartirán en 4 períodos semanales
- El laboratorio se impartirá 2 períodos semanales
- Durante el curso se asignarán tareas, ejercicios, prácticas e investigaciones.

VI. CALENDARIZACIÓN SEMANAL

Actividades	Ju	lio		Ag	osto			Septiembre Octubre							Nov	
Unidad 1	22	29	5	12	19	26										
Corto 1							R2									
Calificación								9								
Proyecto 1																
Unidad 2							2				30	7	14		28	
Corto 2															28	
Calificación																2
Proyecto 2																
Semana de										23						
congresos																
Asueto									16					21		

VII. CONTENIDO DEL CURSO

Unidad 1: Máquina Extendida

1. Creación de Scripts en Bash

- o 1.2.1. Introducción a Bash
- o 1.2.2. Estructura básica de un script
- 1.2.3. Variables y control de flujo
- 1.2.4. Scripts para administración del sistema

2. Procesos y Programación Concurrente

- 1.3.1. Manejo de procesos en Linux
- 1.3.2. Diagrama de transición de procesos
- 1.3.3. Programación concurrente en Linux

3. Rust

- o 1.4.1. Conceptos básicos de Rust
- o 1.4.2. Conceptos únicos de Rust
- o 1.4.3. ¿Qué podemos hacer con Rust?

4. Módulos de Kernel

- o 1.5.1. Comandos para administración de módulos de Kernel
- 1.5.2. Creación de módulos en Linux
- o 1.5.3. Introducción a System Calls
- 1.5.4. Process Control Block (PCB)

5. Virtualización del Sistema Operativo: Containers

- o 1.6.1. Hipervisores
- o 1.6.2. VMs y MicroVMs
- 1.6.3. Conceptos básicos de contenedores
- 1.6.4. Ventajas y desventajas de los contenedores

6. Containers con Docker

- 1.7.1. Instalación y configuración de Docker
- o 1.7.2. Explicación del Docker Engine
- o 1.7.3. Dockerfile y Multistages
- 1.7.4. Network de contenedores

Unidad 2: Cloud Computing

7. Cloud Native

- o 2.1.1. ¿Qué es Cloud Native?
- o 2.1.2. Proveedores de la nube

8. Environmental Sustainability

- 1.5.1. ¿Qué es la sostenibilidad ambiental?
- 1.5.2. Prácticas sostenibles en la Computación en la Nube
- 1.5.3. Herramientas para crear sistemas sostenibles

9. Google Cloud como Proveedor

- o 2.2.1. Cloud Run
- o 2.2.2. Compute Engine
- o 2.2.3. Kubernetes Engine
- 2.2.4. Artifact Registry
- o 2.2.4. Productos relacionados (Functions, Scheduler, etc...)

10. Kubernetes

- o 2.3.1. Conceptos básicos de Kubernetes
- o 2.3.2. Creación y administración de clusters
- o 2.3.3. Deployments, Services y Pods
- o 2.3.4. Networking
- o 2.3.5. Storage y Security

11. Concurrencia, Paralelismo y Sistemas Distribuidos

- o 2.4.1. Manejo de concurrencia con Go, Channels y Routines
- o 2.4.2. Comunicación de procesos usando gRPC
- o 2.4.3. Kafka
- o 2.4.4. NoSQL para sistemas distribuidos

VIII. ACTIVIDADES DE LABORATORIO (PENDIENTE)

EVENTO	PUNTEO
Tareas (10 pts.)
Tarea 1	1 pts.
Tarea 2	2 pts
Tarea 3	3 pts
Tarea 4	2 pts
Tarea 5	2 pts
Hojas de Trabajo (5pts)
Hoja de Trabajo 1	5 pts
Proyectos (80 pt	cs.)
Proyecto 1	30 pts
Proyecto 2	50 pts
Cortos (5 pts.)	
Corto 1	2.5 pts
Corto 2	2.5 pts
Total	100

IX. BIBLIOGRAFÍA Y RECURSOS

Libros de texto:

- Learning Modern Linux. Michael Hausenblas
- Operating System Concepts. Abraham Silberschatz, Peter Baer Galvin y Greg Gagne
- Modern Operating Systems. Andrew S. Tanenbaum