UNIVERSIDAD DE SAN CARLOS DE GUATEMALA
FACULTAD DE INGENIERIA
Escuela de Ciencias y Sistemas

FICHA TECNICA DEL CURSO: Organizacion de Lenguajes y Compiladores 2

No. Descripcion
. Cdédigo 781 Créditos 6
1 Escuela A . Vigencia:
Ciencias y Sistemas 61 &2 G p.e’rtenece.
y Computacion .
Primer Semestre 2026
2 periodos por Horario Secciéon N
semana
4 Martes y Jueves de 19:00 a 20:40
& Prerrequisitos:
772 (Estructuras de Datos)
777 (Organizacion de Lenguajes y Compiladores 1)
4 Posrequisito: 281 (Sistemas operativos 1)
972 (Inteligencia Artificial 1)
5 Seccion: A
6 I. Descripcion General

Este curso es la continuacion del estudio de las fases de un Compilador, especificamente el analisis de
semantica y la fase de sintesis. Se tratan con detalle las definiciones dirigidas por la sintaxis, el manejo de la
tabla de simbolos, la generacién de codigo intermedio y optimizacion de cédigo

Se desarrollaran dos proyectos para aplicar los conceptos generales de compiladores, usando herramientas
basicas tales como generadores de analizadores de léxico y de sintaxis.

Il. Competencia General

Disefa e implementa compiladores o intérpretes de lenguajes de alto nivel mediante el uso de herramientas
especializadas para la construccion de analizadores |éxicos, sintacticos y semanticos, asegurando la
generacion de cadigo intermedio funcional y optimizado.

lll. Objetivos
Objetivo General
Comprender y aplicar los conceptos fundamentales de las fases que integran un compilador, con énfasis
en el analisis semantico, la generacion de codigo intermedio y la optimizacién del cédigo, para fortalecer el
disefo y la eficiencia de procesos de traduccion de lenguajes.

Objetivos Especificos
1. [Establecer una base teérica sélida que fundamente el disefio de compiladores para lenguajes de
alto nivel, a partir del estudio de sus componentes fundamentales.
2. Desarrollar proyectos aplicados que incorporen los conceptos esenciales del proceso de
compilacién, promoviendo el aprendizaje practico y contextualizado.
3. Implementar herramientas de analisis lIéxico, sintactico y semantico en la construccion de
compiladores o intérpretes, que faciliten la transformacion eficiente de lenguajes de alto nivel.

lll. Contenido

1. Traduccion dirigida por la sintaxis
1.1. Definiciones dirigidas por la sintaxis
1.1.1. Atributos heredados y sintetizados
1.1.2. Evaluacién de una definicién dirigida por la sintaxis en los nodos de un arbol sintactico
1.2. Ordenes de evaluacién para las definiciones dirigidas por la sintaxis
1.2.1. Graficos de dependencias
1.2.2. Orden de evaluacion
1.2.3. Definiciones con atributos sintetizados
1.2.4. Definiciones con atributos heredados
1.3. Aplicaciones de la traduccion orientada por la sintaxis
1.3.1. Construccioén de arboles de analisis sintactico




1.3.2. La estructura de tipos
1.4. Esquemas de traduccidn orientados por la sintaxis
1.4.1. Esquemas de traduccién postfijos
1.4.2. Implementacion de esquemas de traduccion orientados a la sintaxis postfijo con la pila
1.4.3. Esquema de traduccion orientados a la sintaxis con acciones dentro de producciones
1.4.4. Eliminacion de la recursividad por la izquierda de los esquemas de traduccion
1.4.5. Esquemas de traduccion orientados a la sintaxis para definiciones con atributos heredados por
la izquierda
1.5. Implementacion de definiciones dirigidas por la sintaxis con atributos heredados por la izquierda
1.5.1. Traduccién durante el analisis sintactico de descenso recursivo
1.5.2. Generacion de cédigo al instante
1.5.3. Las definiciones dirigidas por la sintaxis con atributos heredados por la izquierda y analisis
sintactico LL
1.5.4. Andlisis sintactico ascendente de las definiciones dirigidas por la sintaxis con atributos
heredados por la izquierda

Generacion de codigo intermedio
2.1. Variantes de los arboles sintacticos
2.1.1. Grafo dirigido aciclico para expresiones
2.1.2. Método numero de valor para GDA
2.2. Cadigo de tres direcciones
2.2.1. Direcciones e instrucciones
2.2.2. Cuadruplos
2.2.3. Tripletas
2.2.4. Forma de asignacion individual estatica
2.3. Tipos y declaraciones
2.3.1. Expresiones de tipos y equivalencias
2.3.2. Declaraciones y distribuciéon de almacenamiento
2.3.3. Secuencias de las declaraciones
2.3.4. Campos en registros
2.4. Traduccion de expresiones
2.4.1. Operaciones dentro de expresiones
2.4.2. Traduccién incremental
2.4.3. Direccionamiento de los elementos de un arreglo
2.4.4. Traduccion de referencias a arreglos
2.5. Comprobacion de tipos
2.5.1. Reglas para la comprobacion de tipos
2.5.2. Conversiones de tipos
2.5.3. Sobrecarga de funciones y operadores
2.5.4. Inferencia de tipos y funciones polimérficas
2.5.5. Un algoritmo para la unificacion
2.6. Flujo de control
2.6.1. Expresiones booleanas
2.6.2. Cdadigo de corto circuito
2.6.3. Instrucciones de flujo de control
2.6.4. Traduccion del flujo de control de las expresiones booleanas
2.6.5. Evitar goto redundantes
2.6.6. Valores booleanos y cédigo de salto
2.7. Parcheo de retroceso
2.7.1. Generacién de codigo de una pasada
2.7.2. Técnica de retroceso
2.7.3. Instrucciones de flujo de control
2.8. Instrucciones switch
2.8.1. Traducciones de switch
2.8.2. Traduccidn orientada por la sintaxis de switch
2.9. Cadigo intermedio para procedimientos

Optimizacion de cédigo
3.1. Optimizacion de bloques basicos
3.1.1. Representacion GDA
3.1.2. Busqueda de subexpresiones locales comunes
3.1.3. Eliminacién de cédigo muerto
3.1.4. Uso de identidades algebraicas
3.1.5. Representacion de referencias a arreglos
3.1.6. Asignacion de apuntadores y llamadas a procedimientos




3.1.7. Reensamblado de bloques basicos
3.2. Optimizacion de mirilla
3.2.1. Eliminacién de instrucciones redundantes
3.2.2. Eliminacion de cédigo inalcanzable
3.2.3. Optimizaciones de flujo de control
3.2.4. Simplificacion algebraica y reduccion por fuerza

IV. Metodologia:

La asignatura se desarrollara mediante una combinacion de estrategias didacticas que fomentan el
aprendizaje significativo. Se utilizara la clase magistral para la exposicién y analisis de los fundamentos
tedricos esenciales. Asimismo, se promovera la resolucion de problemas y el autoestudio como herramientas
para afianzar la comprension de los contenidos y estimular la autonomia intelectual del estudiante.

El proceso formativo se complementara con la realizacién de proyectos aplicados y actividades de laboratorio,
que permitiran poner en practica los conocimientos adquiridos, desarrollar habilidades técnicas y fortalecer el
pensamiento critico en contextos reales de programacion y compilacion.

V. Evaluacion:

La evaluacion se divide en dos componentes principales:

1. Trabajo de Laboratorio (32 puntos):
Se asignaran mediante la ejecucién de dos proyectos practicos, que permitiran aplicar y consolidar los
conocimientos técnicos desarrollados en el curso.

2. Evaluacion Teérica (68 puntos):
Compuesta por los siguientes instrumentos de evaluacion:

Tres evaluaciones parciales: 36 puntos
Examenes cortos: 7 puntos
Examen final: 25 puntos

Criterios de Aprobacion:
Para aprobar el curso, el estudiante debera cumplir con los siguientes minimos requeridos:

Laboratorio: Obtener al menos 19.52 puntos sobre los 32 posibles.
Zona: Alcanzar un minimo de 36 puntos

CALENDARIO DE EXAMENES

Primer Examen 19 de febrero

Parcial UNIDAD 1. Traduccién dirigida por la sintaxis
Segundo Examen 19 de marzo

Parcial UNIDAD 2. Generacion de cédigo intermedio
Tercer Examen 23 de abiril

Parcial UNIDAD 2. Cédigo intermedio para procedimientos

UNIDAD 3. Optimizacién de codigo

Examen Final De acuerdo con el calendario oficial
TODAS LAS UNIDADES

Observaciones:
Direccion de correo electronico para consultas:
Ing. Edgar Saban: 1766572310101@ingenieria.usac.edu.gt

Bibliografia Libro de Texto: Compiladores. Principios, Técnicas y Herramientas Aho, Sethi y Ullmam.
PEARSON ADDISON-WESLEY, 2008, segunda edicion.

Tutor Omar Vides




